Answer:
The car would travel after applying brakes is, d = 14.53 m
Explanation:
Given that,
The time taken to apply brakes fully is, t = 0.5 s
The velocity of the car, v = 29.06 m/s
The distance traveled by the car in 0.5 s, d = ?
The relation between the velocity, displacement, and time is given by the formula
d = v x t m
Substituting the values in the above equation,
d = 29.06 m/s x 0.5 s
= 14.53 m
Therefore, the car would travel after applying brakes is, d = 14.53 m
Answer:
: Rocket weight on earth
: Rocket weight on moon
Explanation:
Conceptual analysis
Weight is the force with which a body is attracted due to the action of gravity and is calculated using the following formula:
W = m × g Formula (1)
W: weight
m: mass
g: acceleration due to gravity
The mass of a body on the moon is equal to the mass of a body on the earth
The acceleration due to gravity on a body is different on the moon and on the earth
Equivalences
1 slug = 14.59 kg
Known data



Problem development
To calculate the weight of the rocket on the moon and on earth we replace the data in formula (1):
: Rocket weight on earth
: Rocket weight on moon
Answer:
Step by step explanation:
Answer:
C a basketball player pushes into another one and they both fall to the left
Explanation:
I believe his is the answer because I don't see any force and not enough reaction
Answer:
it is accelerating 14 m/s
Explanation: