The total charge on the interior of the conductor is zero.
The total charge on the exterior of the conductor is 8q.
<h3>
Total charge on the interior</h3>
Due to large number of electrons available for conduction in a conductor, most of the electrons moves to surface leaving zero net charge inside the conductor.
Thus, the total charge on the interior of the conductor is zero.
<h3>T
otal charge on the exterior</h3>
The total charge on the exterior of the conductor is calculated as follows;
Q = q + 7q = 8q
Thus, the total charge on the exterior of the conductor is 8q.
Learn more about net charge on interior and exterior of conductors here: brainly.com/question/14653264
Answer:
![[F]=[MLT^{-2}]](https://tex.z-dn.net/?f=%5BF%5D%3D%5BMLT%5E%7B-2%7D%5D)
Explanation:
Newton’s second law states that the acceleration a of an object is proportional to the force F acting on it is inversely proportional to its mass m. The mathematical expression for the second law of motion is given by :
F = m × a
F is the applied force
m is the mass of the object
a is the acceleration due to gravity
We need to find the dimensions of force. The dimension of force m and a are as follows :
![[m]=[M]](https://tex.z-dn.net/?f=%5Bm%5D%3D%5BM%5D)
![[a]=[LT^{-2}]](https://tex.z-dn.net/?f=%5Ba%5D%3D%5BLT%5E%7B-2%7D%5D)
So, the dimension of force F is,
. Hence, this is the required solution.
Answer:yes
Explanation:The constan acceleration means that it wont stop moving but if you kick it a different direction then it will change direction
According to Newton's second law, the force applied to an object is equal to the product between the mass of the object and its acceleration:

where F is the magnitude of the force, m is the mass of the object and a its acceleration.
In this problem, the object is the insect, with mass

. The acceleration of the insect is

, therefore we can calculate the force exerted by the car on the insect:

How do we find the force exerted by the insect on the car?
According to Newton's third law (known as action-reaction law), when an object A exerts a force on an object B, object B also exerts a force equal and opposite on object A. Therefore, the force exerted by the insect on the car is equal to the force exerted by the car on the object, so it is 0.01 N.
No. Motion is the thing that when you're moving, you're in it.
But it IS possible for one person to say you're moving and another person to say you're not moving, both at the same time, and both of them are correct !