Answer:
you look at the lengths some triagles have small parallel lines anè or two of them to determine if they are equal or different from one another
Answer:
Hi Im Pride and i would like to take you to your answer your answer to this question is
20% of his customer ordered cheese but no chilli on their hot dogs
Step-by-step explanation:
please mark brainly
First, the values of 2sqrt(3) or 3sqrt(3) are not even twice the length of the given base, 3.
Next, I would say that 6 is the better answer than 12, assuming that the triangle is”drawn-to-scale”.
Finally, I think the hypotenuse is 6.
Answer:
- make sure calculator is in "radians" mode
- use the cos⁻¹ function to find cos⁻¹(.23) ≈ 1.338718644
Step-by-step explanation:
A screenshot of a calculator shows the cos⁻¹ function (also called arccosine). It is often a "2nd" function on the cosine key. To get the answer in radians, the calculator must be in radians mode. Different calculators have different methods of setting that mode. For some, it is the default, as in the calculator accessed from a Google search box (2nd attachment).
__
The third attachment shows a graph of the cosine function (red) and the value 0.23 (dashed red horizontal line). Everywhere that line intersects the cosine function is a value of A such that cos A = 0.23. There are an infinite number of them. You need to know about the symmetry and periodicity of the cosine function to find them all, given that one of them is A ≈ 1.339.
The solution in the 4th quadrant is at 2π-1.339, and additional solutions are at these values plus 2kπ, for any integer k.
__
Also in the third attachment is a graph of the inverse of the cosine function (purple). The dashed purple vertical line is at x=0.23, so its intersection point with the inverse function is at 1.339, the angle at which cos(x)=0.23. The dashed orange graph shows the inverse of the cosine function, but to make it be single-valued (thus, a <em>function</em>), the arccosine function is restricted to the range 0 ≤ y ≤ π (purple).
_____
So, the easiest way to answer the problem is to use the inverse cosine function (cos⁻¹) of your scientific or graphing calculator. (<em>Always make sure</em> the angle mode, degrees or radians, is appropriate to the solution you want.) Be aware that the cosine function is periodic, so there is not just one answer unless the range is restricted.
__
I keep myself "unconfused" by reading <em>cos⁻¹</em> as <em>the angle whose cosine is</em>. As with any inverse functions, the relationship with the original function is ...
cos⁻¹(cos A) = A
cos(cos⁻¹ a) = a
For the first triangle add 45 and 95 and subtract it from 180