The joules required to heat 2L of water in a pot from 20 c to the boiling point of water is calculated using the following formula
Q= MC delta T
M = mass = density x volume( 2 x 1000= 2000ml)
M = 1g/ml x2000 ml = 2000g
C = specific heat capacity = 4.18 g/c
delta T = change in temperature = 100 c ( boiling point of water) - 20 c = 80 c
Q is therefore = 2000 g x 4.18 j/g c x 80c = 668800j
Answer:
1.The Aluminum block
2.its surroundings absorb energy from it.
Explanation:
In this question it is important to remember that density of an object is the mass of that object divided by its volume.
The expression applied here is density=mass/volume
Given that the mass is constant,lets say mass= m=1g
and density of aluminum=2.7g/cm³ and that of iron is 7.8 g/cm³ then volume=?
Volume=mass/density
Volume of aluminum= 1/2.7 =0.3704 cm³
Volume of iron = 1/7.8 =0.1282 cm³
Here we see volume of Aluminum block is the largest.
2.As water in an ice cube tray freezes, its surroundings absorb energy from it.When the water freezes, latent heat of freezing is given out to the surrounding.When water is freezing, it stays at a constant temperature of 0°C, the heat energy released ensures that there is no cooling past 0 °C.
<h3>
Answer:</h3>
43.33 atm
<h3>
Explanation:</h3>
We are given;
Mass of C₆H₆ = 26.2 g
Volume of the container = 0.25 L
Temperature = 395 K
We are required to calculate the pressure inside the container;
First, we calculate the number of moles of C₆H₆
Molar mass of C₆H₆ = 78.1118 g/mol.
But; Moles = mass ÷ Molar mass
Moles of C₆H₆ = 26.2 g ÷ 78.1118 g/mol.
= 0.335 moles C₆H₆
Second, we calculate the pressure, using the ideal gas equation;
Using the ideal gas equation, PV = nRT , Where R is the ideal gas constant, 0.082057 L.atm/mol.K
Therefore;
P = nRT ÷ V
= (0.335 mol × 0.082057 × 395 K) ÷ 0.25 L
= 43.433 atm
Therefore, the pressure inside the container is 43.33 atm
The last option, fossil fuels are non-renewable sources.