Mass of methanol (CH3OH) = 1.922 g
Change in Temperature (t) = 4.20°C
Heat capacity of the bomb plus water = 10.4 KJ/oC
The heat absorbed by the bomb and water is equal to the product of the heat capacity and the temperature change.
Let’s assume that no heat is lost to the surroundings. First, let’s calculate the heat changes in the calorimeter. This is calculated using the formula shown below:
qcal = Ccalt
Where, qcal = heat of reaction
Ccal = heat capacity of calorimeter
t = change in temperature of the sample
Now, let’s calculate qcal:
qcal = (10.4 kJ/°C)(4.20°C)
= 43.68 kJ
Always qsys = qcal + qrxn = 0,
qrxn = -43.68 kJ
The heat change of the reaction is - 43.68 kJ which is the heat released by the combustion of 1.922 g of CH3OH. Therefore, the conversion factor is:
Answer:
Answer: 1.095 * 10^22 atoms of P.
Explanation:
Answer:
b. Conducts electricity when dissolved in water
Explanation:
Iron(II) chloride, is the chemical compound with formula FeCl2.
It is a solid with a high melting point of about 677 degree Celsius or 950 K when in anhydrous form but have lower melting point in hydrated form.
The compound is often off-white. FeCl2 crystallizes from water as the greenish tetrahydrate, which is the form that is most commonly encountered in the laboratory.
There is also a dihydrate. The compound is highly soluble in water, giving pale green solutions.