The question is incomplete, here is the complete question:
The rate of certain reaction is given by the following rate law:
At a certain concentration of
As we are given that:
Initial rate = 0.120 M/s
Expression for rate law for first observation:
....(1)
Expression for rate law for second observation:
....(2)
Dividing 2 by 1, we get:
Therefore, the initial rate of the reaction will be, 0.03 M/s
Scientists use a Graduated Cylinder
To get the theoretical yield of ammonia NH3:
first, we should have the balanced equation of the reaction:
3H2(g) + N2(g) → 2NH3(g)
Second, we start to convert mass to moles
moles of N2 = N2 mass / N2 molar mass
= 200 / 28 = 7.14 moles
third, we start to compare the molar ratio from the balanced equation between N2 & NH3 we will find that N2: NH3 = 1:2 so when we use every mole of N2 we will get 2 times of that mole of NH3 so,
moles of NH3 = 7.14 * 2 = 14.28 moles
finally, we convert the moles of NH3 to mass again to get the mass of ammonia:
mass of NH3 = no.moles * molar mass of ammonia
= 14.28 * 17 = 242.76 g
Answer:
O.
Explanation:
- The element which is oxidized is the element that losses electrons and its oxidation state be more positive.
- The element which is reduced is the element that gain electrons and its oxidation state be more negative.
<em> O goes from 0 to -2, so, it is the element that is reduced.</em>
Answer:
MgCl₂+ Na₂CO₃ ==> MgCO₃ + NaCl
From a quick observation
You see that the right hand side of the eqn is deficient of Sodium and Chlorine
Simply Add a Coefficient of 2 to NaCl to balance it with the left.
Your answer now becomes
MgCl₂ + Na₂CO₃ ==> MgCO₃ + 2NaCl.✅