Wow ! This will take more than one step, and we'll need to be careful
not to trip over our shoe laces while we're stepping through the problem.
The centripetal acceleration of any object moving in a circle is
(speed-squared) / (radius of the circle) .
Notice that we won't need to use the mass of the train.
We know the radius of the track. We don't know the trains speed yet,
but we do have enough information to figure it out. That's what we
need to do first.
Speed = (distance traveled) / (time to travel the distance).
Distance = 10 laps of the track. Well how far is that ? ? ?
1 lap = circumference of the track = (2π) x (radius) = 2.4π meters
10 laps = 24π meters.
Time = 1 minute 20 seconds = 80 seconds
The trains speed is (distance) / (time)
= (24π meters) / (80 seconds)
= 0.3 π meters/second .
NOW ... finally, we're ready to find the centripetal acceleration.
<span> (speed)² / (radius)
= (0.3π m/s)² / (1.2 meters)
= (0.09π m²/s²) / (1.2 meters)
= (0.09π / 1.2) m/s²
= 0.236 m/s² . (rounded)
If there's another part of the problem that wants you to find
the centripetal FORCE ...
Well, Force = (mass) · (acceleration) .
We know the mass, and we ( I ) just figured out the acceleration,
so you'll have no trouble calculating the centripetal force. </span>
Let us situate this on the x axis, and let our uniform line of charge be positioned on the interval <span>(−L,0]</span> for some large number L. The voltage V as a function of x on the interval <span>(0,∞)</span> is given by integrating the contributions from each bit of charge. Let the charge density be λ. Thus, for an infinitesimal length element <span>d<span>x′</span></span>, we have <span>λ=<span><span>dq</span><span>d<span>x′</span></span></span></span>.<span>V(x)=<span>1/<span>4π<span>ϵ0</span></span></span><span>∫line</span><span><span>dq/</span>r</span>=<span>λ/<span>4π<span>ϵ0</span></span></span><span>∫<span>−L</span>0</span><span><span>d<span>x/</span></span><span>x−<span>x′</span></span></span>=<span>λ/<span>4π<span>ϵ0</span></span></span><span>(ln|x+L|−ln|x|)</span></span>
Answer:
The moment of inertia decreased by a factor of 4
Explanation:
Given;
initial angular velocity of the ice skater, ω₁ = 2.5 rev/s
final angular velocity of the ice skater, ω₂ = 10.0 rev/s
During this process we assume that angular momentum is conserved;
I₁ω₁ = I₂ω₂
Where;
I₁ is the initial moment of inertia
I₂ is the final moment of inertia

Therefore, the moment of inertia decreased by a factor of 4
Answer:
14. scolded
15. supporter
16. i am not sure but I think it is removes
17. comfortable
18. outdated
19. drink
20. it can be fantastic or wealthy
Yesterday was the day that we got canceled on it so we had a lot