The frequency : a) 7.5 x 10¹⁴ /s
<h3>Further explanation</h3>
Radiation energy is absorbed by photons
The energy in one photon can be formulated as

Where
h = Planck's constant (6,626.10⁻³⁴ Js)
f = Frequency of electromagnetic waves (/s or Hz)
f = c / λ
c = speed of light
= 3.10⁸ m/s
λ = wavelength
The wavelength(λ) of purple light is 400 x 10⁻⁹ m, so the frequency :

Answer:
Explanation:
For a flower to appear blue, "it needs to be able to produce a molecule that can absorb very small amounts of energy," in order to absorb the red part of the spectrum, Kupferschmidt said.
696.32 mmHg is the final pressure of the gas.
<h3>What is an ideal gas equation?</h3>
The ideal gas equation, pV = nRT, is an equation used to calculate either the pressure, volume, temperature or number of moles of a gas.
Given data:
= 720 mmHg
= ?
= 2.5 mol
= 3.2 mol
= 34 L
= 45 L
Formula
Combined gas law

= 696.32 mmHg
Hence, 696.32 mmHg is the final pressure of the gas.
Learn more about an ideal gas equation here:
brainly.com/question/19251972
#SPJ1
For a closed system, you need two things:
1) a conservation of mass within the boundaries of the system
2) the ability to freely exchange energy to & from the "closed" system with a surrounding external system
So, the answer is <u><em>never</em></u>, since your defining the "system" as the water within the bathtub, and an open bathtub is exposed to evaporation, which is not conserving mass within the defined "system".
Answer:
Please find the definition and further explanation below
Explanation:
Based on the ability for the solvent (liquid substance) to dissolve a solute (solid substance), a solution can either be unsaturated, saturated or supersaturated. A SATURATED SOLUTION is that which contains the maximum amount of solute a solvent can possibly dissolve.
In other words, a saturated solution can no longer dissolve anymore solute, and hence, any further solute added forms crystals or makes the solution supersaturated.