1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Taya2010 [7]
3 years ago
5

A 54.0-kg projectile is fired at an angle of 30.0° above the horizontal with an initial speed of 126 m/s from the top of a cliff

132 m above level ground, where the ground is taken to be y = 0. (a) What is the initial total mechanical energy of the projectile? (Give your answer to at least three significant figures.) J (b) Suppose the projectile is traveling 89.3 m/s at its maximum height of y = 297 m. How much work has been done on the projectile by air friction? J (c) What is the speed of the projectile immediately before it hits the ground if air friction does one and a half times as much work on the projectile when it is going down as it did when it was going up?
Physics
1 answer:
Nikolay [14]3 years ago
7 0

Answer:

a) The initial total mechanical energy of the projectile is 498556.296 joules.

b) The work done on the projectile by air friction is 125960.4 joules.

c) The speed of the projectile immediately before it hits the ground is approximately 82.475 meters per second.

Explanation:

a) The system Earth-projectile is represented by the Principle of Energy Conservation, the initial total mechanical energy (E) of the project is equal to the sum of gravitational potential energy (U_{g}) and translational kinetic energy (K), all measured in joules:

E = U_{g} + K (Eq. 1)

We expand this expression by using the definitions of gravitational potential energy and translational kinetic energy:

E = m\cdot g\cdot y + \frac{1}{2}\cdot m\cdot v^{2} (Eq. 1b)

Where:

m - Mass of the projectile, measured in kilograms.

g - Gravitational acceleration, measured in meters per square second.

y - Initial height of the projectile above ground, measured in meters.

v - Initial speed of the projectile, measured in meters per second.

If we know that m = 54\,kg, g = 9.807\,\frac{m}{s^{2}}, y = 132\,m and v = 126\,\frac{m}{s}, the initial mechanical energy of the earth-projectile system is:

E = (54\,kg)\cdot \left(9.807\,\frac{m}{s^{2}}\right)\cdot (132\,m)+\frac{1}{2}\cdot (54\,kg)\cdot \left(126\,\frac{m}{s} \right)^{2}

E = 498556.296\,J

The initial total mechanical energy of the projectile is 498556.296 joules.

b) According to this statement, air friction diminishes the total mechanical energy of the projectile by the Work-Energy Theorem. That is:

W_{loss} = E_{o}-E_{1} (Eq. 2)

Where:

E_{o} - Initial total mechanical energy, measured in joules.

E_{1} - FInal total mechanical energy, measured in joules.

W_{loss} - Work losses due to air friction, measured in joules.

We expand this expression by using the definitions of gravitational potential energy and translational kinetic energy:

W_{loss} = E_{o}-K_{1}-U_{g,1}

W_{loss} = E_{o} -\frac{1}{2}\cdot m\cdot v_{1}^{2}-m\cdot g\cdot y_{1} (Eq. 2b)

Where:

m - Mass of the projectile, measured in kilograms.

g - Gravitational acceleration, measured in meters per square second.

y_{1} - Maximum height of the projectile above ground, measured in meters.

v_{1} - Current speed of the projectile, measured in meters per second.

If we know that E_{o} = 498556.296\,J, m = 54\,kg, g = 9.807\,\frac{m}{s^{2}}, y_{1} = 297\,m and v_{1} = 89.3\,\frac{m}{s}, the work losses due to air friction are:

W_{loss} = 498556.296\,J -\frac{1}{2}\cdot (54\,kg)\cdot \left(89.3\,\frac{m}{s} \right)^{2} -(54\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (297\,m)

W_{loss} = 125960.4\,J

The work done on the projectile by air friction is 125960.4 joules.

c) From the Principle of Energy Conservation and Work-Energy Theorem, we construct the following model to calculate speed of the projectile before it hits the ground:

E_{1} = U_{g,2}+K_{2}+1.5\cdot W_{loss} (Eq. 3)

K_{2} = E_{1}-U_{g,2}-1.5\cdot W_{loss}

Where:

E_{1} - Total mechanical energy of the projectile at maximum height, measured in joules.

U_{g,2} - Potential gravitational energy of the projectile, measured in joules.

K_{2} - Kinetic energy of the projectile, measured in joules.

W_{loss} - Work losses due to air friction during the upward movement, measured in joules.

We expand this expression by using the definitions of gravitational potential energy and translational kinetic energy:

\frac{1}{2}\cdot m \cdot v_{2}^{2} = E_{1}-m\cdot g\cdot y_{2}-1.5\cdot W_{loss} (Eq. 3b)

m\cdot v_{2}^{2} = 2\cdot E_{1}-2\cdot m \cdot g \cdot y_{2}-3\cdot W_{loss}

v_{2}^{2} = 2\cdot \frac{E_{1}}{m}-2\cdot g\cdot y_{2}-3\cdot \frac{W_{loss}}{m}

v_{2} = \sqrt{2\cdot \frac{E_{1}}{m}-2\cdot g\cdot y_{2}-3\cdot \frac{W_{loss}}{m}  }

If we know that E_{1} = 372595.896\,J, m = 54\,kg, g = 9.807\,\frac{m}{s^{2}}, y_{2} =0\,m and W_{loss} = 125960.4\,J, the final speed of the projectile is:

v_{2} =\sqrt{2\cdot \left(\frac{372595.896\,J}{54\,kg}\right)-2\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (0\,m)-3\cdot \left(\frac{125960.4\,J}{54\,kg}\right)  }

v_{2} \approx 82.475\,\frac{m}{s}

The speed of the projectile immediately before it hits the ground is approximately 82.475 meters per second.

You might be interested in
Match each statement with the characteristic of scientists.
Dimas [21]

Answer:

Options B, A, D, C

Explanation:

When a scientists, let's say Roberto wonders if the presence of other elements also affects the color of a flame, he can decide to prove this through a study. Therefore, in chemistry class, Roberto sees that traces of lithium makes a flame appear bright red. Subsequently, Roberto designs an experiment to test flame color in the presence of different elements and finally Roberto's friend tells him the color of a flame cannot be changed, but Roberto is still unsure.

5 0
3 years ago
Read 2 more answers
Which phrase provides the best context clue for the meaning of the word tabulate?​
Paul [167]

Answer:

round and count

Explanation:

means arrange, order, organize, etc

6 0
3 years ago
Read 2 more answers
What are three characteristic properties of matter?
Licemer1 [7]
Physical characteristics of matter include its mass<span>, weight, volume, and </span>density<span>. It also specifically describes its odor, shape, texture, and </span>hardness<span>. In addition, physical properties describe whether the object is a solid, a liquid, or a gas – its phase of matter at room temperature.</span>
4 0
3 years ago
Read 2 more answers
How would i solve for force when there are multiple accelerations?
damaskus [11]

"Multiple accelerations" is a puzzling phrase, and I'd be curious to understand it
better.  Sadly however, you haven't explained it at all.

If the multiple accelerations are the accelerations of multiple objects, then
the net force on each object is the product of (its mass) x (its acceleration).

If the multiple accelerations are the acceleration of one object at different times,
then at any instant of time, the net force on the object is the product of (its mass) x
(its acceleration at that instant).

8 0
3 years ago
When testing a technological design, you may sometimes need to use a model instead of the real thing
Arlecino [84]
That's called a prototype, mainly used to save resources of the company or inventor. And used to look for flaws and perfect them to make the product more safe and efficient.
8 0
3 years ago
Other questions:
  • If you hold your arm outstretched with palm upward, the force to keep your arm from falling comes from your deltoid muscle. assu
    14·1 answer
  • If 20 beats are produced within one second, which of the following frequencies could possibly be held by two sound waves traveli
    11·2 answers
  • What distance will a vehicle travel before coming to a complete stop from a speed of 70 mph, (a) When the vehicle is traveling o
    8·1 answer
  • How can the continuous addition of heat in a closed system cause it to explode?
    15·2 answers
  • Phosphorus-32, a radioactive isotope of phosphorus-31 (atomic number 15), undergoes a form of radioactive decay whereby a neutro
    10·1 answer
  • 3. The figure below shows the motion of a car. It starts from the origin, O travels 8m
    9·1 answer
  • Can someone help? Please?
    15·2 answers
  • If a person walks 3 m north and 5 meters east, how would you find the displacement for that person? what would the displacement
    13·1 answer
  • A transformer is designed to provide 6 V from a 150 V supply. If the primary coil has 1000 turns, how many turns does the second
    9·1 answer
  • If the satellite has a mass of 3900 kg , a radius of 4.3 m , and the rockets each add a mass of 210 kg , what is the required st
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!