Water boiling, no cheamical bonds have been altered.
Answer:
a).11.546J
b).2.957kW
Explanation:
Using Inertia and tangential velocity
a).


Now using Inertia an w

average power=
b).
power=t*w
P=
P=2.957 kW
There are many processes to get nuclear energy. Nuclear energy is basically energy from an atom. For example fission is where the nucleus of an atom ( typically radioactive atoms ) gets split then energy is released ( typically heat). And in radioactive decay radiation is released from an radioactive atom. Hope this helps
I think the answer is d. In the magnetotail. I hope this helps! :)
Answer:
E. Kepler's second law says the planet must move fastest when it is closest, not when it is farthest away.
Explanation:
We can answer this question by using Kepler's second law of planetary motion, which states that:
"A line connecting the center of the Sun with the center of each planet sweeps out equal areas in equal intervals of time"
This means that when a planet is further away from the Sun, it will move slower (because the line is longer, so it must move slower), while when the planet is closer to the Sun, it will move faster (because the line is shorter, so it must move faster).
In the text of this problem, it is written that the planet moves at 31 km/s when is close to the star and 35 km/s when it is farthest: this is in disagreement with what we said above, therefore the correct option is
E. Kepler's second law says the planet must move fastest when it is closest, not when it is farthest away.