Answer:
The minimum speed is 14.53 m/s.
Explanation:
Given that,
r = 11 m
Friction coefficient = 0.51
Suppose we need to find the minimum speed, that the cylinder must make a person move at to ensure they will stick to the wall
When frictional force becomes equal to or greater than the weight of person
Then, he sticks to the wall
We need to calculate the minimum speed
Using formula for speed

Where,


Put the value into the formula


Hence, The minimum speed is 14.53 m/s.
Answer:


Explanation:
m = Mass of each the cars = 
= Initial velocity of first car = 3.46 m/s
= Initial velocity of the other two cars = 1.4 m/s
v = Velocity of combined mass
As the momentum is conserved in the system we have

Speed of the three coupled cars after the collision is
.
As energy in the system is conserved we have

The kinetic energy lost during the collision is
.
☁️ Answer ☁️
The main disadvantage of convex mirrors is that they show a distorted picture of what is behind you. Distances are seen not as they are in reality and things appear closer than they really are. They are showing cars approximately twice as far away as they actually are.
Hope it helps.
Have a nice day hyung!~  ̄▽ ̄❤️
Answer:
N= 3
Explanation:
For this exercise we must use Faraday's law
E = - dФ / dt
Ф = B . A = B Acos θ
tje bold indicate vectors. As it indicates that the variation of the field is linear, we can approximate the derivatives
E = - A cos θ (B - B₀) / t
The angle enters the magnetic field and the normal to the area is zero
cos 0 = 1
A = π r²
In the length of the wire there are N turns each with a length L₀ = 2π r
L = N (2π r)
r = L / 2π N
we substitute
A = L² / (4π N²)
The magnetic field produced by a solenoid is
B = μ₀ N/L I
for which
B₀ = μ₀ N/L I
The final field is zero, because the current is zero
B = 0
We substitute
E = - (L² / 4π N²) (0 - μ₀ N/L I) / t
E = μ₀ L I / (4π N t)
N = μ₀ L I / (4π t E)
The electromotive force is E = 0.80 mV = 0.8 10⁻³ V
let's calculate
N = 4π 10⁻⁷ 200 1.60 / (4π 0.120 0.8 10⁻³)]
N = 320 10⁻⁷ / 9.6 10⁻⁶
N = 33.3 10⁻¹
N= 3
9.8m per seccond is the speed of gravity if you drop something like a ball from a tower