Answer:
B. Amount of snot the tissue can hold
Explanation:
In this specific scenario, the dependent variable would be the amount of snot the tissue can hold. That is because this is what Justin is trying to measure, which is also dependent on the type of tissue which would be the independent variable in this scenario. The different types of tissues can absorb different amounts of snot and this is what Justin ultimately wants to determine.
Taking into account the reaction stoichiometry, you can observe that:
- one mole of Ca₃P₂ produces 2 mol of PH₃.
- the mole ratio between phosphine and calcium phosphide is 2 mol PH₃ over 1 mol Ca₃P₂.
<h3>Reaction stoichiometry</h3>
In first place, the balanced reaction is:
Ca₃P₂ + 6 H₂O → 3 Ca(OH)₂ + 2 PH₃
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of moles of each compound participate in the reaction:
- Ca₃P₂:1 mole
- H₂O: 6 moles
- Ca(OH)₂: 3 moles
- PH₃: 2 moles
The molar mass of the compounds is:
- Ca₃P₂: 182 g/mole
- H₂O: 18 g/mole
- Ca(OH)₂: 74 g/mole
- PH₃: 34 g/mole
Then, by reaction stoichiometry, the following mass quantities of each compound participate in the reaction:
- Ca₃P₂: 1 mole ×182 g/mole= 182 grams
- H₂O: 6 moles× 18 g/mole= 108 grams
- Ca(OH)₂: 3 moles ×74 g/mole= 222 grams
- PH₃: 2 moles ×34 g/mole= 68 grams
<h3>Correct statements</h3>
Then, by reaction stoichiometry, you can observe that:
- one mole of Ca₃P₂ produces 2 mol of PH₃.
- the mole ratio between phosphine and calcium phosphide is 2 mol PH₃ over 1 mol Ca₃P₂.
Learn more about the reaction stoichiometry:
<u>brainly.com/question/24741074</u>
<u>brainly.com/question/24653699</u>
the overall equation for the conversation of pyruvate to acetyl COA is as below
CH3COO-COO- + NAD+ + HS-COA = ch3-COO-S -COA +NADH +CO2
The oxidation of pyruvate led to a conversation of NAD+ to NADH and produces acetyl COA and CO2
Automobiles have they highest cost for of pollution in the air