Answer:
Inductance as calculated is 13.12 mH
Solution:
As per the question:
Length of the coil, l = 12 cm = 0.12 m
Diameter, d = 1.7 cm = 0.017 m
No. of turns, N = 235
Now,
Area of cross-section of the wire, A = 
We know that the inductance of the coil is given by the formula:

Answer:
h = 3.5 m
Explanation:
First, we will calculate the final speed of the ball when it collides with a seesaw. Using the third equation of motion:

where,
g = acceleration due to gravity = 9.81 m/s²
h = height = 3.5 m
vf = final speed = ?
vi = initial speed = 0 m/s
Therefore,

Now, we will apply the law of conservation of momentum:

where,
m₁ = mass of colliding ball = 3.6 kg
m₂ = mass of ball on the other end = 3.6 kg
v₁ = vf = final velocity of ball while collision = 8.3 m/s
v₂ = vi = initial velocity of other end ball = ?
Therefore,

Now, we again use the third equation of motion for the upward motion of the ball:

where,
g = acceleration due to gravity = -9.81 m/s² (negative for upward motion)
h = height = ?
vf = final speed = 0 m/s
vi = initial speed = 8.3 m/s
Therefore,

<u>h = 3.5 m</u>
The period T of a pendulum is given by:

where L is the length of the pendulum while

is the gravitational acceleration.
In the pendulum of the problem, one complete vibration takes exactly 0.200 s, this means its period is

. Using this data, we can solve the previous formula to find L:
I think is between A&B
I think I would answer B