1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Molodets [167]
3 years ago
11

1. I’m in the 2nd column, 4th row, and I’m a metal. Who am I? ________________ 2. I’m a very lonely nonmetal. Who am I? ________

____ 3. I’m the only metal who is a liquid at room temperature. Who am I? ____________ 4. I’m named after the person who created the 1st Periodic Table. Who am I? ___________ 5. I have 92 protons. Who am I? _____________ 6. I’m the only nonmetal who is a liquid at room temperature. Who am I? ___________ 7. I’m named after a very famous scientist. Who am I? ___________ 8. I have 46 electrons. Who am I? ____________ 9. My atomic mass is 183.84. Who am I? _____________ 10. My chemical symbol is Ag. Who am I? ________________ 11. I’m the only metalloid in period 3. Who am I? ___________ 12. I’m the only element that is solid and a nonmetal in group 14. Who am I? _____________ 13. I have 5 neutrons. Who am I? ____________ 14. I’m the only gas at room temperature that is in group 16. Who am I? ___________ 15. I have 68 protons. Who am I? __________ 16. What element has the chemical symbol of Ir? ______________ 17. Which element is in group 7 and has 30 neutrons. Who am I? ___________ 18. I’m the only metal in group 15. Who am I? ____________ 19. I have 88 electrons. Who am I? ___________ 20. I’m the only gas at room temperature and in period 5. Who am I? ____________ 21. My symbol is Am. Who am I? ______________ 22. I’m the only nonmetal in period 6. Who am I? ____________ 23. My atomic number is 69.723. Who am I? _________________ 24. I have 159 neutrons. Who am I? ________________ 25. I’m the only metalloid in group 17. Who am I? ______________ 26. I have 50 electrons. Who am I? __________________ 27. I’m in the 1st group and the 4th period. Who am I? ________________ 28. I’m a metalloid whose symbol is Sb. Who am I? ______________ ©JFlowers2017 Name: ______________________________ Date: ___________Class: ________ Periodic Table Scavenger Hunt Directions: You will use the Periodic Table to answer the questions. 1. I’m in the 17th column, a nonmetal, & a solid at room temperature. Who am I? ________________ 2. I have 79 electrons. Who am I? ____________ 3. I’m the only gas in period 6. Who am I? ____________ 4. My atomic mass is 257. Who am I? ___________ 5. My chemical symbol is Hs. Who am I? _____________ 6. I have 114 neutrons. Who am I? ___________ 7. I’m in the 18th group and 2 nd period. Who am I? ___________ 8. I have 67 protons. Who am I? ____________ 9. I’m a nonmetal who is solid at room temperature & has 2 letters for my symbol. Who am I? _________ 10. I’m in the 1 st group & 7 th period. Who am I? ________________ 11. I’m the only metalloid in group 13. Who am I? ___________ 12. I have 97 electrons. Who am I? _____________ 13. I am the only gas in column 15. Who am I? ____________ 14. My name is similar to Mickey Mouse’s best friend. Who am I? ___________ 15. I’m in group 11 & period 4. Who am I? __________ 16. I have 62 protons. Who am I? ______________ 17. My name fits really well with doctors because they try to do this. Who am I? ___________ 18. My name reminds me of where we all live. Who am I? ____________ 19. I’m the only nonmetal in period 2. Who am I? ___________ 20. My atomic number is 87.62. Who am I? ____________ 21. My symbol is Mt. Who am I? ______________ 22. I’m in group 17 & the only metalloid. Who am I? ____________ 23. I have 71 electrons. Who am I? _________________ 24. My symbol is Pd. Who am I? ________________ 25. I’m Dorothy’s friend who needed a heart. Who am I? ______________ 26. I have 41 protons. Who am I? __________________ 27. I have 125 neutrons. Who am I? ________________ 28. My name comes from the 8th planet. Who am I? ______________
Physics
1 answer:
Ghella [55]3 years ago
6 0

Answer:

Explanation:

I'm in 17th column , a nometal, and a solid at room temperature. What am i

You might be interested in
Zeb was lifting a box onto a moving truck. He lifted with a net force of 2000N and the box had a mass of 100 kg. What was the re
Aleksandr [31]

Answer:

<h2>20 m/s²</h2>

Explanation:

The acceleration of an object given it's mass and the force acting on it can be found by using the formula

a =  \frac{f}{m}  \\

f is the force

m is the mass

From the question we have

a =  \frac{2000}{100}  = 20 \\

We have the final answer as

<h3>20 m/s²</h3>

Hope this helps you

8 0
3 years ago
PLEASE HELP : What happens in obese mice? (Physiology)
irina1246 [14]

Answer and

Explanation:

The gut microbiota has recently emerged as an important, and previously unappreciated, player in host physiology (1). In particular, the gut microbiota contributes to a variety of physiological and pathophysiological processes in the host including immune disorders (2–4), atherosclerosis (5), irritable bowel syndrome (6, 7), blood pressure regulation (8), and chronic kidney disease (9, 10). Bacteria residing in the human gut are an important component of human physiology: the total wet weight of gut microbes in the human has been estimated to be 175 g–1.5 kg (11, 12), and the cells of the microbiota outnumber human cells by 10:1 (1). These bacteria interact with the immune system of the host (13), and secrete a variety of metabolites, which enter host circulation and can affect a variety of physiological parameters (8, 14), reviewed in Ref. (15). In fact, metabolites produced by the gut microbiota have been found to play key roles in renal disease (16), blood pressure regulation (8), and immune disorders (2–4). Therefore, just as we consider the genetic background of an animal or an individual to be an important contributing factor to their physiology, so too must we consider the genetic background of the microbiota associated with that animal.

Gut microbiota vary greatly amongst laboratory animals, and these differences result in notable differences in experimental results. Mice of the same strain from different vendors have different microbiota profiles (17), and similarly, the same mice housed at different institutions have different microbiota profiles (18, 19). Conversely, inoculating two different inbred mouse strains with the same gut bacteria leads to differences in host gene expression between the two mouse strains (20). Clearly, there is a complex interplay between the genetics of the microbiota and that of the host organism, which has only recently begun to be appreciated.

Go to:

Gut Microbiota as an Experimental Parameter

Examples in the literature have highlighted the important and unexpected ways in which gut microbiota can affect a variety of experimental parameters. In a series of studies, Vijay-Kumar et al. (13, 21) reported that although TLR5 null animals initially had a colitis phenotype, when these mice were “rederived” and their gut microbiota altered, the colitis phenotype was greatly attenuated, and instead the null animals exhibited metabolic syndrome. In addition, Lathrop et al. put forward a model by which T-cells are educated not only by self/non-self mechanisms, but also by microbiota-derived “non-self” antigens (22). Accordingly, they found that the presence or absence of microbiota determined whether T cells would induce colitis in mice. Finally, Yang et al. reported that when the same knockout mice were housed at two different institutions, they had markedly different microbiota profiles – and the mice at one institution (MIT) were quite susceptible to colitis, whereas mice at the other institution (MHH) failed to develop any significant pathology under the same conditions (19). Unequivocally, altering gut microbiota – even by housing animals at different institutions – can have dramatic effects on the phenotype observed.

Go to:

Gut Microbiota and Obesity and Diabetes

It is important to note that not only can microbiota affect host physiology, but the gut microbiota are not necessarily stable over time. Rather, gut microbiota can change or shift as a result of experimental manipulation (in animals) or changes in lifestyle or nutrition (in humans). It is now appreciated that there are “shifts” in microbiota that occur in obesity in mice, rats, and humans (23–26). In one study, Turnbaugh et al. (25) examined human female twin pairs concordant for leanness or obesity, and found that obesity was associated with phylum-level changes in microbiota.

7 0
3 years ago
Assume that an intercontinental ballistic missile goes from rest to a suborbital speed of 6.50 km/s in 60.0 s (the actual speed
olasank [31]

Answer:

Average acceleration is (11.05)g\ m/s^2

Explanation:

It is given that,

Initial velocity, u = 0

Final velocity, v = 6.5 km/s = 6500 m/s

Time taken, t = 60 s

Acceleration, a=\dfrac{v-u}{t}

a=\dfrac{v}{t}  

a=\dfrac{6500\ m/s}{60}  

a=108.33\ m/s^2

Since, g=9.8\ m/s^2

So, a=(11.05)g\ m/s^2

So, the angular acceleration of the missile is (11.05)g\ m/s^2. Hence, this is the required solution.

4 0
3 years ago
Problem page a cyclist traveled 20 kilometers per hour faster than an in-line skater. in the time it took the cyclist to travel
RideAnS [48]
<span>Answer: skater x km/h cyclist 20 faster x + 20 km/h skater 30 km cyclist 80 km skater time = cyclist time t=d/r 30 / x = 80 /( x + 20 cross multiply 30 ( x + 20 ) = 80 x 30 x + 600 = 80 x 30 x - 80 x = -600 -50 x = -600 / -50 x = 12 km/h 12 km/h skater</span>
3 0
3 years ago
2<br><br> How does Descartes' "quality of motion" differ from the modern<br><br> momentum?
Rzqust [24]

Answer: Descartes was more of speed which defers from modern day velocity.

Explanation:

Descartes law if conservation referred or defined “motion” rather than “momentum” as what is obtainable in today's world as ”speed” the rate at which something moves rather than “velocity” which is a product of speed and direction. So in conclusion Descartes was more of speed which defers from modern day velocity.

6 0
3 years ago
Other questions:
  • Is it possible for speed to be constant while acceleration is not zero?
    15·1 answer
  • On a road trip, a driver achieved an average speed of (48.0+A) km/h for the first 86.0 km and an average speed of (43.0-B) km/h
    7·1 answer
  • Help me please to do those problems...
    13·1 answer
  • Why is the restoring force in Hooke's law a negative value?
    12·2 answers
  • Assume that a resistor is connected between the 150 V terminal and the common terminal. The voltmeter is then connected to an un
    5·1 answer
  • You drop a 10 kg bowling ball off a 2 story building, what is the force generated by
    8·1 answer
  • Electric charges do not flow all the way through____________
    5·2 answers
  • Which hand is negatively charged?<br> A<br> B<br> C<br> D
    11·2 answers
  • A 10v battery is connected in series with 2 resistors. R1 is 1 ohm and R2 is 4 ohms. What is the current that goes across R1?
    5·1 answer
  • What is the current in a circuit that has a resistance of 75Ω and a voltage drop of 120V across the cell? (I'll give brainliest!
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!