Answer:
The machine used is called a squaring shear, power shear, or guillotine.
Explanation:
Answer:
Vf = 210 [m/s]
Av = 105 [m/s]
y = 2205 [m]
Explanation:
To solve this problem we must use the following formula of kinematics.

where:
Vf = final velocity [m/s]
Vo = initial velocity = 0 (released from the rest)
g = gravity acceleration = 10 [m/s²]
t = time = 21 [s]
Vf = 0 + (10*21)
Vf = 210 [m/s]
Note: The positive sign for the gravity acceleration means that the object is falling in the same direction of the gravity acceleration (downwards)
The average speed is defined as the sum of the final speed plus the initial speed divided by two. (the initial velocity is zero)
Av = (210 + 0)/2
Av = 105 [m/s]
To calculate the distance we must use the following equation of kinematics

44100 = 20*y
y = 2205 [m]
Answer:
Acceleration = 0.9144 m/s^2
Explanation:
Initial speed = 45 ft/s
Final speed = 60 ft/s
Time = 5 sec
Acceleration = a = (v-u) / t
= 60-45 / 5
= 0.9144 m/s^2
It must displace at least 500 milliliters (0.5 liter) of water, in order to float in water.
Given:
Shaft Power, P = 7.46 kW = 7460 W
Speed, N = 1200 rpm
Shearing stress of shaft,
= 30 MPa
Shearing stress of key,
= 240 MPa
width of key, w = 
d is shaft diameter
Solution:
Torque, T = 
where,

= 59.365 N-m
Now,


d = 0.0216 m
Now,
w =
=
= 5.4 mm
Now, for shear stress in key
= 
we know that
T =
= F. 
⇒
= 
⇒
= 
length of the rectangular key, l = 4.078 mm