1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bezzdna [24]
3 years ago
13

A high-speed drill rotating ccw at 2400 rpm comes to a halt in 2.5 s. What is the magnitude of the drill’s angular acceleration?

How many revolutions does it make as it stops?
Physics
1 answer:
WARRIOR [948]3 years ago
3 0

Answer:

The magnitude of the drills angular acceleration is -32\pi s^{-2}.

The drill makes 50 revolutions before it stops.

Explanation:

The revolutions that the drill makes in 1 second is

\dfrac{2400\:rev}{60s} =40\:rev/s

And the angular velocity is

\omega= \dfrac{40 (2\pi )}{1s}          (<em>one revolution is </em>2\pi<em> radians)</em>

\boxed{\omega =80\pi\:s^{-1}}

Now, the drill comes to a halt in 2.5 s, which means the magnitude of it's angular acceleration is

a= \dfrac{\Delta \omega}{\Delta s}

a=\dfrac{80\pi-0 }{0-2.5s}

\boxed{a=-32\pi \:s^{-2}}

In other words, the magnitude of the angular acceleration is -32\pi\: s^{-2}.

Now, we find the angular displacement of the drill which is given by the equation

\theta = \omega t +\dfrac{1}{2} \alpha t^2

putting in \omega = 80\pi s^{-1}, \alpha = -32\pi s^{-2}, and t=2.5s, we get:

\theta = (80\pi s^{-1} *2.5s)+\dfrac{1}{2} (-32\pi s^{-2})(2.5s)^2

\theta = 100\pi

which is

\dfrac{100\pi }{2\pi } =50\:rev                <em>(one revolution is </em>2\pi<em> radians)</em>

50 revolutions.

In other words ,the drill makes 50 revolutions before it stops.

You might be interested in
A hummingbird flies 1.2 m along a straight path at a height of 3.4 m above the ground. Upon spotting a flower below, the humming
Viefleur [7K]

Answer:1.84

Explanation:

Given

Humming bird travels 1.2 m along a straight line at height of 3.4 m

Now bird drops 1.4 m to hover in front of the flower

So bird net displacement is

displacement=\sqrt{1.2^2+1.4^2}

displacement=\sqrt{3.4}

=1.84

7 0
3 years ago
A pipe in a manufacturing plant is transporting superheated vapor at a mass flow rate of 0.3 kg/s. the pipe is 10 m long, has an
tatiyna
Draw a schematic and determine your thermal resistance values.
6 0
3 years ago
An object with mass 100 kg moved in outer space. When it was at location &lt;8, -30, -4&gt; its speed was 5.5 m/s. A single cons
Alenkasestr [34]

Answer:

v = ( 6.41 i^ + 8.43 j^ + 2.63 k^ ) m/s

Explanation:

We can solve this problem using the kinematic relations, we have a three-dimensional movement, but we can work as three one-dimensional movements where the only parameter in common is time (a scalar).

X axis.

They indicate the initial position x = 8 m, its initial velocity v₀ = 5.5 m / s, the force Fx₁ = 220 N x₁ = 14 m, now the force changes to Fx₂ = 100 N up to the point xf = 17 m. The final speed is wondered.

As this movement is in three dimensions we must find the projection of the initial velocity in each axis, for this we can use trigonometry

the angle fi is with respect to the in z and the angle theta with respect to the x axis.

               sin φ = z / r

                Cos φ = r_p / r

               z = r sin φ

               r_p = r cos φ

the modulus of the vector r can be found with the Pythagorean theorem

               r² = (x-x₀) ² + (y-y₀) ² + (z-z₀) ²

               r² = (14-8) 2 + (-21 + 30) 2+ (-7 +4) 2

               r = √126

               r = 11.23 m

Let's find the angle with respect to the z axis (φfi)

                φ = sin⁻¹ z / r

                φ = sin⁻¹ ( \frac{-7+4}{11.23} )

                φ = 15.5º

Let's find the projection of the position vector (r_p)

                r_p = r cos φ

                r_p = 11.23 cos 15.5

                r_p = 10.82 m

This vector is in the xy plane, so we can use trigonometry to find the angle with respect to the x axis.

                 cos θ = x / r_p

                 θ = cos⁻¹ x / r_p

                 θ = cos⁻¹ ( \frac{14-8}{10.82})  

                 θ = 56.3º

taking the angles we can decompose the initial velocity.

               sin φ = v_z / v₀

               cos φ = v_p / v₀

               v_z = v₀ sin φ

               v_z = 5.5 sin 15.5 = 1.47 m / z

               v_p = vo cos φ

               v_p = 5.5 cos 15.5 = 5.30 m / s

                 

               cos θ = vₓ / v_p

                sin θ = v_y / v_p

                vₓ = v_p cos θ

                v_y = v_p sin θ

                vₓ = 5.30 cos 56.3 = 2.94 m / s

                v_y = 5.30 sin 56.3 = 4.41 m / s

 

                 

we already have the components of the initial velocity

                v₀ = (2.94 i ^ + 4.41 j ^ + 1.47 k ^) m / s

let's find the acceleration on this axis (ax1) using Newton's second law

                Fₓx = m aₓ₁

                aₓ₁ = Fₓ / m

                aₓ₁ = 220/100

                aₓ₁ = 2.20 m / s²

Let's look for the velocity at the end of this interval (vx1)

Let's be careful if the initial velocity and they relate it has the same sense it must be added, but if the velocity and acceleration have the opposite direction it must be subtracted.

                 vₓ₁² = v₀ₓ² + 2 aₓ₁ (x₁-x₀)

                 

let's calculate

                 vₓ₁² = 2.94² + 2 2.20 (14-8)

                 vₓ₁ = √35.04

                 vₓ₁ = 5.92 m / s

to the second interval

they relate it to xf

                   aₓ₂ = Fₓ₂ / m

                   aₓ₂ = 100/100

                   aₓ₂ = 1 m / s²

final speed

                    v_{xf}²  = vₓ₁² + 2 aₓ₂ (x_f- x₁)

                    v_{xf}² = 5.92² + 2 1 (17-14)

                    v_{xf} =√41.05

                    v_{xf} = 6.41 m / s

We carry out the same calculation for each of the other axes.

Axis y

acceleration (a_{y1})

                      a_{y1} = F_y / m

                      a_{y1} = 460/100

                      a_[y1} = 4.60 m / s²

the velocity at the end of the interval (v_{y1})

                      v_{y1}² = v_{oy}² + 2 a_{y1{ (y₁ -y₀)

                      v_{y1}2 = 4.41² + 2 4.60 (-21 + 30)

                      v_{y1} = √102.25

                       v_{y1} = 10.11 m / s

second interval

acceleration (a_{y2})

                      a_{y2} = F_{y2} / m

                      a_{y2} = 260/100

                      a_{y2} = 2.60 m / s2

final speed

                     v_{yf}² = v_{y1}² + 2 a_{y2} (y₂ -y₁)

                     v_{yf}² = 10.11² + 2 2.60 (-27 + 21)

                      v_{yf} = √ 71.01

                      v_{yf} = 8.43 m / s

here there is an inconsistency in the problem if the body is at y₁ = -27m and passes the position y_f = -21 m with the relationship it must be contrary to the velocity

z axis

 

first interval, relate (a_{z1})

                      a_{z1} = F_{z1} / m

                      a_{z1} = -200/100

                      a_{z1} = -2 m / s

the negative sign indicates that the acceleration is the negative direction of the z axis

the speed at the end of the interval

                    v_{z1}² = v_{zo)² + 2 a_{z1} (z₁-z₀)

                    v_{z1}² = 1.47² + 2 (-2) (-7 + 4)

                    v_{z1} = √14.16

                    v_{z1} = -3.76 m / s

second interval, acceleration (a_{z2})

                    a_{z2} = F_{z2} / m

                    a_{z2} = 210/100

                    a_{z2} = 2.10 m / s2

final speed

                    v_{fz}² = v_{z1}² - 2 a_{z2} | z_f-z₁)

                    v_{fz}² = 3.14² - 2 2.10 (-3 + 7)

                     v_{fz} = √6.94

                     v_{fz} = 2.63 m / s

speed is     v = ( 6.41 i^ + 8.43 j^ + 2.63 k^ ) m/s

5 0
3 years ago
The speed of light in air is 3.0 x 10^8 m/s. The speed of light in particular glass is 2.3 x 10^8 m/s. Use the information to de
olga_2 [115]

Answer:

33.61°

Explanation:

Refractive index is equal to velocity of the light 'c' in empty space divided by the velocity 'v' in the substance.

Or ,

n = c/v.

v is the velocity in the medium  (2.3 × 10⁸ m/s)

c is the speed of light in air = 3.0 × 10⁸ m/s

So,  

n = 3.0 × 10⁸ /  2.3 × 10⁸

n = 1.31

Using Snell's law as:

n_i\times {sin\theta_i}={n_r}\times{sin\theta_r}

Where,  

{\theta_i}  is the angle of incidence  ( 25.0° )

{\theta_r} is the angle of refraction  ( ? )

{n_r} is the refractive index of the refraction medium  (air, n=1)

{n_i} is the refractive index of the incidence medium (glass, n=1.31)

Hence,  

1.31\times {sin25.0^0}={1}\times{sin\theta_r}

Angle of refraction = sin^{-1}0.5536 = 33.61°

5 0
3 years ago
¿Tres ejemplos de rozamiento cinético?
Verizon [17]

Answer:

Un automóvil en movimiento en una carretera.

Una piedra rodando por una colina.

Un hierro que se empuja a través del materia

4 0
3 years ago
Other questions:
  • What generates the magnetic field that surrounds a wire carrying an electric current?
    11·1 answer
  • IF ANYONEE HAS DONE THE MOMENTUM LAB PRACTICAL IN PHYSICS CAN YOU PLEASEEEEE GIVE ME THE ANSWERS I AM SOOOO LOSTT RNN :(
    11·1 answer
  • A large box of mass M is moving on a horizontal floor at speed v0. A small box of mass m is sitting on top of the large box. The
    12·1 answer
  • An unknown resistor is connected between the terminals of a 3.00 V battery. Energy is dissipated in the resistor at the rate of
    11·1 answer
  • • Q. A car was moving with speed 30m/s a force was applied on the car to cause The car
    8·1 answer
  • chris runs around a circular track with a radius of 39 meters. he makes five trips around the track in 220 seconds. a. what is t
    12·1 answer
  • What is the weight of a 200 kg mass?
    11·1 answer
  • Which scientist explained why binary stars change colors?
    7·1 answer
  • A car travels 200km in 3.0 hours. Determine the average velocity of the car
    6·1 answer
  • Please help me please help​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!