Answer:
0.034M HCl is the concentration of the diluted solution
Explanation:
You take, initially, 25.00mL of the 0.136M HCl. Then, you dilute the solution to 100.00mL. The solution is diluted:
100.00mL / 25.00mL = 4. The solution was diluted 4 times.
That means the concentration of the diluted solution is:
0.136M / 4 =
<h3>0.034M HCl is the concentration of the diluted solution</h3>
Vocabulary. Balanced chemical equation: A chemical equation in which the number of each type of atom is equal on the two sides of the equation.
Hope I helped! (´▽`)
__________________________________________________________
単語。平衡化学反応式:各タイプの原子の数が方程式の両側で等しい化学反応式。
私が助けてくれたらいいのに!(´▽`)
Answer:
NaOH(aq) + HNO3(aq)------>NaNO3(aq) + H2O(l)
Explanation:
A thing to note is that an acid and a base will react to form a metal salt + H2O.
~Hope it helps:).
Answer:
0.054 mol O
Explanation:
<em>This is the chemical formula for acetic acid (the chemical that gives the sharp taste to vinegar): CH₃CO₂H. An analytical chemist has determined by measurements that there are 0.054 moles of carbon in a sample of acetic acid. How many moles of oxygen are in the sample?</em>
<em />
Step 1: Given data
- Chemical formula of acetic acid: CH₃CO₂H
- Moles of carbon in the sample: 0.054 moles
Step 2: Establish the appropriate molar ratio
According to the chemical formula, the molar ratio of C to O is 2:2.
Step 3: Calculate the moles of oxygen in the sample
We will use the molar ratio to determine the moles of oxygen accompanying 0.054 moles of carbon.
0.054 mol C × (2 mol O/2 mol C) = 0.054 mol O
Answer:
2.53 L is the volume of H₂ needed
Explanation:
The reaction is: C₁₈H₃₀O₂ + 3H₂ → C₁₈H₃₆O₂
By the way we can say, that 1 mol of linolenic acid reacts with 3 moles of oxygen in order to produce, 1 mol of stearic acid.
By stoichiometry, ratio is 1:3
Let's convert the mass of the linolenic acid to moles:
10.5 g . 1 mol / 278.42 g = 0.0377 moles
We apply a rule of three:
1 mol of linolenic acid needs 3 moles of H₂ to react
Then, 0.0377 moles will react with (0.0377 . 3 )/1 = 0.113 moles of hydrogen
We apply the Ideal Gases Law to find out the volume (condition of measure are STP) → P . V = n . R . T → V = ( n . R .T ) / P
V = (0.113 mol . 0.082 L.atm/mol.K . 273.15K) 1 atm = 2.53 L