1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aev [14]
3 years ago
6

6. Dr. Li boils water using a kettle with a 1.5 kW Nichrome (80% Ni and 20% Cr) heating element (resister heater). The diameter

and length of this heating element is 8 mm and 20 cm, respectively. When exposed to liquid water, the convection heat transfer between water and heating element is 800 W m2K . Please find: (25 Points) (1) The surface temperature and maximum temperature of the heating element when water is boiling in the kettle in Dr. Li’s office, ESB 751. (2) The surface temperature and maximum temperature when all liquid water has been evaporated and the heating element is exposed completely to the superheated vapor. You can assume the convection heat transfer between superheated water vapor and heating element is 24 W m2K . You can assume the temperature of the superheated water vapor is 100 °C. (3) Please justify if the heating element can survive in case (2) without melting.
Engineering
1 answer:
grigory [225]3 years ago
4 0

Assuming that:

The heat generation is uniform throughout the heating element, Nichrome wire.

The cross-sections are insulated and heat transfer is taking place only in the radial direction.

All the heat generated is conducted, there is energy storage.

Now, from the properties of Nichrome:

The melting temperature of Nichrome, T_m=1400 ^{\circ}C

Thermal conductivity, K=11.3 W/m^{\circ}C

Given that:

The power generated by the heating element, Q_g=1.5kW=1500W

Diameter, D=8mm=8\times10^{-3}m

So, radius, R=4\times10^{-3}m

Length, L=20cm=0.2m

The volume of the Nichrome wire,

V=\pi R^2L=\pi\times (4\times10^{-3})^2\times0.2=1.005\times10^{-5}m^3

Heat generation rate per unit volume,

q_g=\frac{Q_g}{V}=\frac{1500}{1.005\times10^{-5}}=149.2\times10^{6}W/m^3

With the assumptions made above, this is the case of heat transfer in one direction.

Let T be the temperature at the radius r.

Now, the heat generated within the cylinder of radius r is conducted in a radially outward direction. i.e

q_g(\pi r^2)L=-K(2\pi r L)\frac{dT}{dr} [where K is the thermal conductivity oof Nichrome]

\Rightarrow -\frac{q_g}{2K}rdr=dT

\Rightarrow T=-\frac{q_g}{4K}r^2+ C_0 , where C_0 is constant.

Let the surface temperature is T_s, i.e at r=R, T=T_s.

Putting this boundary condition to get C_0, we have

T=T_s+\frac{q_g}{4K}(R^2-r^2)

This is the temperature profile within the Nichrome wire, which is maximum at r=0.

So, the maximum temperature,

T_{max}=T_s+\frac{q_g}{4K}R^2\;\cdots(i)

(1) The water is boiling, to the temperature of the water is, T_b=100^{\circ}C.

The total heat generated within the heating element is convected to the water from the surface. i.e

Q_g=h_w(2\pi RL)(T_s-T_b)

where, h_w=800W/m^2K=800W/m^2^{\circ}C is the convective heat transfer constant (Given).

\Rightarrow 1500=800\times (2\pi\times4\times10^{-3}\times 0.2(T_s-100)

\Rightarrow T_s=100+373=473^{\circ}C

So, the surface temperature is 473^{\circ}C.

From equation (i), the maximum temperature is at the center of the wire which is

T_{max}=473+\frac{149.2\times10^{6}}{4\times11.3}(4\times10^{-3})^2

\Rightarrow T_{max}=473+53=526^{\circ}C

(2) In this case, the temperature of the superheated water vapor, T_b = 100^{\circ}C (Given)

The heat transfer coefficient between the superheated water vapor and the heating surface is, h_v=24W/mK=24W/m^{\circ}C.

Similarly, Q_g=h_v(2\pi RL)(T_s-T_b)

\Rightarrow 1500=24\times (2\pi\times4\times10^{-3}\times 0.2(T_s-100)

\Rightarrow T_s=100+12434=12534^{\circ}C

So, the surface temperature is 12534^{\circ}C.

From equation (i), the maximum temperature is at the center of the wire which is

T_{max}=12534+\frac{149.2\times10^{6}}{4\times11.3}(4\times10^{-3})^2

\Rightarrow T_{max}=12534+53=12587^{\circ}C

(3) The melting temperature of Chromium is 1400 ^{\circ}C.

So, the 1st case when the heating element is surrounded by water is safe as the maximum temperature within the element is below the melting temperature.

But, it the 2nd case, the heating element will melt out as the maximum temperature is much higher than the melting temperature of the element.

You might be interested in
Why does teachers grade things that are not due yet​
pav-90 [236]
I think because if you’ve already turned it in they might as well grade asap instead of waiting
4 0
3 years ago
Read 2 more answers
What's the relationship between energy and time<br>​
boyakko [2]

Answer:

The relationship between power, energy, and time can be described by the following equation : P = Δ E s y s Δ t. P is the average power output, measured in watts (W) ΔEsys is the net change in energy of the system in joules (J) - also known as work. Δt is the duration - how long the energy use takes - measured in seconds (s).

Explanation:

8 0
3 years ago
A Carnot refrigeration cycle absorbs heat at -12 °C and rejects it at 40 °C. a)-Calculate the coefficient of performance of this
tresset_1 [31]

Answer:

a)COP=5.01

b)W_{in}=2.998 KW

c)COP=6.01

d)Q_R=17.99 KW

Explanation:

Given

T_L= -12°C,T_H=40°C

For refrigeration

  We know that Carnot cycle is an ideal cycle that have all reversible process.

So COP of refrigeration is given as follows

COP=\dfrac{T_L}{T_H-T_L}  ,T in Kelvin.

COP=\dfrac{261}{313-261}

a)COP=5.01

Given that refrigeration effect= 15 KW

We know that  COP=\dfrac{RE}{W_{in}}

RE is the refrigeration effect

So

5.01=\dfrac{15}{W_{in}}

b)W_{in}=2.998 KW

For heat pump

So COP of heat pump is given as follows

COP=\dfrac{T_h}{T_H-T_L}  ,T in Kelvin.

COP=\dfrac{313}{313-261}

c)COP=6.01

In heat pump

Heat rejection at high temperature=heat absorb at  low temperature+work in put

Q_R=Q_A+W_{in}

Given that Q_A=15KW

We know that  COP=\dfrac{Q_R}{W_{in}}

COP=\dfrac{Q_R}{Q_R-Q_A}

6.01=\dfrac{Q_R}{Q_R-15}

d)Q_R=17.99 KW

5 0
3 years ago
What is an advantage of using a fully integrated cloud-based data analytics platform?
sweet [91]

Answer:

It gives decision-makers the processing capacity they need to turn raw data into useful knowledge.

Explanation:

Data analysis and the associated cycles (data integration, aggregation, hoarding, and revealing) are totally or partially directed in the cloud with cloud analytics.

3 0
3 years ago
A stainless steel ball (=8055 kg/m3, Cp= 480 J/kgK) of diameter D =15 cm is removed from theoven at a uniform temperature of 3
aleksandrvk [35]

Answer:

i) 25.04 W/m^2 .k

ii) 23.82 minutes = 1429.2 secs

Explanation:

Given data:

Diameter of steel ball = 15 cm

uniform temperature = 350°C

p = 8055 kg/m^3

Cp = 480 J/kg.k

surface temp of ball drops to  250°C

average surface temperature = ( 350 + 250 ) / 2 = 300°C

<u>i) Determine the average convection heat transfer coefficient during the cooling process</u>

<em>Note : Obtain the properties of air at 1 atm at average film temp of 30°C from the table  " properties of air "  contained in your textbook</em>

average convection heat transfer coefficient = 25.04 W/m^2 .k

<u>ii) Determine how long this process has taken </u>

Time taken by the process = 23.82 minutes = 1429.2 seconds

Δt = Qtotal / Qavg = 683232 / 477.92 = 1429.59 secs

attached below is the detailed solution of the given question

3 0
3 years ago
Other questions:
  • Ammonia enters the expansion valve of a refrigeration system at a pressure of 1.4 MPa and a temperature of 32degreeC and exits a
    15·1 answer
  • A cylindrical drill with radius 4 is used to bore a hole through the center of a sphere of radius 5. Find the volume of the ring
    15·1 answer
  • The town of Mustang, TX is concerned that waste heat discharged from a new up- stream power plant will decimate the minnow popul
    10·1 answer
  • Is an ideal way for a high school student to see what an engineer does on a typical day but does not provide a hands-on experien
    9·2 answers
  • An article gave a scatter plot along with the least squares line of x = rainfall volume (m3) and y = runoff volume (m3) for a pa
    6·1 answer
  • Name the four ways in which heat is transferred from a diesel engine
    7·1 answer
  • Help me is it a b c or d?
    14·1 answer
  • Why data structure is important
    5·1 answer
  • true or false: the types of building materials that’s should be used in a project does not constitute a conditional for projects
    13·2 answers
  • All people<br><br><br>id 5603642259 pd 123456<br>on z o o m​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!