1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aev [14]
3 years ago
6

6. Dr. Li boils water using a kettle with a 1.5 kW Nichrome (80% Ni and 20% Cr) heating element (resister heater). The diameter

and length of this heating element is 8 mm and 20 cm, respectively. When exposed to liquid water, the convection heat transfer between water and heating element is 800 W m2K . Please find: (25 Points) (1) The surface temperature and maximum temperature of the heating element when water is boiling in the kettle in Dr. Li’s office, ESB 751. (2) The surface temperature and maximum temperature when all liquid water has been evaporated and the heating element is exposed completely to the superheated vapor. You can assume the convection heat transfer between superheated water vapor and heating element is 24 W m2K . You can assume the temperature of the superheated water vapor is 100 °C. (3) Please justify if the heating element can survive in case (2) without melting.
Engineering
1 answer:
grigory [225]3 years ago
4 0

Assuming that:

The heat generation is uniform throughout the heating element, Nichrome wire.

The cross-sections are insulated and heat transfer is taking place only in the radial direction.

All the heat generated is conducted, there is energy storage.

Now, from the properties of Nichrome:

The melting temperature of Nichrome, T_m=1400 ^{\circ}C

Thermal conductivity, K=11.3 W/m^{\circ}C

Given that:

The power generated by the heating element, Q_g=1.5kW=1500W

Diameter, D=8mm=8\times10^{-3}m

So, radius, R=4\times10^{-3}m

Length, L=20cm=0.2m

The volume of the Nichrome wire,

V=\pi R^2L=\pi\times (4\times10^{-3})^2\times0.2=1.005\times10^{-5}m^3

Heat generation rate per unit volume,

q_g=\frac{Q_g}{V}=\frac{1500}{1.005\times10^{-5}}=149.2\times10^{6}W/m^3

With the assumptions made above, this is the case of heat transfer in one direction.

Let T be the temperature at the radius r.

Now, the heat generated within the cylinder of radius r is conducted in a radially outward direction. i.e

q_g(\pi r^2)L=-K(2\pi r L)\frac{dT}{dr} [where K is the thermal conductivity oof Nichrome]

\Rightarrow -\frac{q_g}{2K}rdr=dT

\Rightarrow T=-\frac{q_g}{4K}r^2+ C_0 , where C_0 is constant.

Let the surface temperature is T_s, i.e at r=R, T=T_s.

Putting this boundary condition to get C_0, we have

T=T_s+\frac{q_g}{4K}(R^2-r^2)

This is the temperature profile within the Nichrome wire, which is maximum at r=0.

So, the maximum temperature,

T_{max}=T_s+\frac{q_g}{4K}R^2\;\cdots(i)

(1) The water is boiling, to the temperature of the water is, T_b=100^{\circ}C.

The total heat generated within the heating element is convected to the water from the surface. i.e

Q_g=h_w(2\pi RL)(T_s-T_b)

where, h_w=800W/m^2K=800W/m^2^{\circ}C is the convective heat transfer constant (Given).

\Rightarrow 1500=800\times (2\pi\times4\times10^{-3}\times 0.2(T_s-100)

\Rightarrow T_s=100+373=473^{\circ}C

So, the surface temperature is 473^{\circ}C.

From equation (i), the maximum temperature is at the center of the wire which is

T_{max}=473+\frac{149.2\times10^{6}}{4\times11.3}(4\times10^{-3})^2

\Rightarrow T_{max}=473+53=526^{\circ}C

(2) In this case, the temperature of the superheated water vapor, T_b = 100^{\circ}C (Given)

The heat transfer coefficient between the superheated water vapor and the heating surface is, h_v=24W/mK=24W/m^{\circ}C.

Similarly, Q_g=h_v(2\pi RL)(T_s-T_b)

\Rightarrow 1500=24\times (2\pi\times4\times10^{-3}\times 0.2(T_s-100)

\Rightarrow T_s=100+12434=12534^{\circ}C

So, the surface temperature is 12534^{\circ}C.

From equation (i), the maximum temperature is at the center of the wire which is

T_{max}=12534+\frac{149.2\times10^{6}}{4\times11.3}(4\times10^{-3})^2

\Rightarrow T_{max}=12534+53=12587^{\circ}C

(3) The melting temperature of Chromium is 1400 ^{\circ}C.

So, the 1st case when the heating element is surrounded by water is safe as the maximum temperature within the element is below the melting temperature.

But, it the 2nd case, the heating element will melt out as the maximum temperature is much higher than the melting temperature of the element.

You might be interested in
A civil engineer is asked to design a curved section of roadway that meets the following conditions: With ice on the road, when
lianna [129]

Answer:

1. 3.4^{o}

2. 163.3 m

Explanation:

Static friction between road and rubber, μs =0.06

The maximum speed of the car, v = 50 km/h

                                              = (50)(1000/3600) m/s

                                               = 13.89 m/s

The acceleration due to gravity, g = 9.81 m/s^{2}

The frictional force, f = μsN     ...... (1)

The component mg cosθ which balance the normal reaction N

The component mg sinθ acts in an opposite direction to the frictional force f.

        ΣF = mg sinθ-f = 0      ...... (2)

Substitute the equation (1) in equation (2), we get

 ΣF = mgsinθ-μsN = 0

 mgsinθ-μsmgcosθ =0

 μs = sinθ/cosθ

   tanθ = μs

    θ = tan-1( μs) = tan-1(0.06) = 3.4^{o}

(b)The vertical component of the force is

N cosθ = fsinθ+mg

 N cosθ = μsNsinθ+mg

N[cosθ- μs sinθ] = mg     ...... (3)

The horizontal component of the force along the motion of the car is

Nsinθ+fcosθ = ma  (Centripetal acceleration, a = \frac {v^{2}}{r}

  Nsinθ+fcosθ = m(\frac {v^{2}}{r})

   Nsinθ+μsNcosθ = m(\frac {v^{2}}{r})

N[sinθ+μs cosθ] = m(\frac {v^{2}}{r})     ...... (4)    

Dividing the equation (4) with equation (3),

 [sinθ+μscosθ]/[cosθ- μs sinθ] = \frac {v^{2}}{rg}

 cosθ[sinθ/cosθ+μs]/cosθ[1- μs sinθ/cosθ] =\frac {v^{2}}{rg}

[tanθ+μs]/[1-μs tanθ] = \frac {v^{2}}{rg}      

 From part (1), tanθ = μs

 Then the above equation becomes

 \frac {(\mu_s+\mu_s]}{[1-\mu_s^{2}]} =\frac {v^{2}}{rg}

\frac {(2\mu_s]}{[1-\mu_s^{2}]} =\frac {v^{2}}{rg}

Therefore, the minimum radius of the curvature of the curve is

               r = \frac {v^{2}}{{2 \mu_s/[1-\mu_s^{2}]}g} 

                   = \frac {v^{2}[1-\mu_s^{2}]}{2\mu_s g}

                   = \frac {(13.89 m/s)^{2}[1-(0.06)^{2}]}{(2)(0.06)(9.81)}

                 = 163.3 m

5 0
3 years ago
Which of the following best describes a central idea of the text?
GREYUIT [131]

Answer:

i think is B

Explanation:

6 0
3 years ago
Write a program to control the operation of the RED/GREEN/BLUE LED (LED2) as follows: 1. If no button is pressed, the LED should
aalyn [17]

Answer:

See explaination

Explanation:

int RED=10; int BLUE=11; int GREEN=12; int BUTTON1=8; int BUTTON2=9; void setup() { pinMode(RED, OUTPUT); pinMode(BLUE, OUTPUT); pinMode(GREEN, OUTPUT); pinMode(BUTTON1, INPUT); pinMode(BUTTON2, OUTPUT); } void loop() { int BTN1_STATE=digitalRead(BUTTON1); int BTN2_STATE=digitalRead(BUTTON2); if(BTN1_STATE==HIGH) { digitalWrite(BLUE, HIGH); delay(1000); // Wait for 1 second digitalWrite(BLUE, LOW); } if(BTN2_STATE==HIGH) { digitalWrite(RED, HIGH); delay(4000); // Wait for 4 seconds digitalWrite(RED, LOW); } if(BTN1_STATE==HIGH && BTN2_STATE==HIGH) { digitalWrite(GREEN, HIGH); delay(2000); // Wait for 2 second digitalWrite(GREEN, LOW); } }

4 0
3 years ago
Does anyone know what this is​
sammy [17]

Answer:

Looks like mold that got frosted over

Explanation:

4 0
2 years ago
Read 2 more answers
Write a program that uses the function isPalindrome given below. Test your program on the following strings: madam, abba, 22, 67
defon

Answer:

#include <iostream>

#include <string>

using namespace std;

bool isPalindrome(string str)

{

   int length = str.length();

   for (int i = 0; i < length / 2; i++)

   {

       if (tolower(str[i]) != tolower(str[length - 1 - i]))

           return false;

   }

   return true;

}

int main()

{

   string s[6] = {"madam", "abba", "22", "67876", "444244", "trymeuemyrt"};

   int i;

   for(i=0; i<6; i++)

   {

       //Testing function

       if(isPalindrome(s[i]))

       {

           cout << "\n " << s[i] << " is a palindrome... \n";

       }

       else

       {

           cout << "\n " << s[i] << " is not a palindrome... \n";

       }

   }    

       

   return 0;

}

5 0
3 years ago
Other questions:
  • To cool a summer home without using a vapor compression refrigeration cycle, air is routed through a plastic pipe (k=0.15 W/m*K,
    15·1 answer
  • A Michelson interferometer operating at a 500 nm wavelength has a 3.73-cm-long glass cell in one arm. To begin, the air is pumpe
    9·1 answer
  • Required information NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part
    9·1 answer
  • Write a single statement that prints outsideTemperature with 2 digits in the fraction
    8·1 answer
  • Define the Artist class in Artist.py with a constructor to initialize an artist's information. The constructor should by default
    7·1 answer
  • Which of the following characteristics would not give animals an advantage in the ocean?
    13·1 answer
  • Hi gospelgamer10 lol
    9·2 answers
  • The driver should be able to see the ground within _____ to the front?
    14·1 answer
  • The metric ruler is typically divided into
    6·2 answers
  • The ratio of the volume of charge admitted at n. T. P. To the swept volume of the piston is called.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!