Answer:

Explanation:
When calculating an empirical formula from percentages, assume you have a 100g sample. This allows you to convert the percentages directly to grams, because X % of 100g is X grams.
So:
24.42 % = 24.42 g Ca, 17.07% = 17.07g N, 58.5% = 58.5g O
The next step is to divide each mass by their molar mass to convert your grams to moles.
24.42/40.08 = 0.6092 mol
17.07/14.01 = 1.218 mol
58.85/15.99 = 3.680 mol
Then you will divide all of your mol values by the SMALLEST number of moles. This gives you whole numbers that are the mole ratio (subcripts) of the empircal formula.
0.6092 mol/0.6092 mol = 1
1.218 mol/0.6092 mol = 2
3.680 mol/0.6092 mol = 6
So the empirical formula is 
Heat transfer is the phenomenon that occurs when the two objects are in the vicinity of each other and by increasing the area of their contact. Thus, option B is correct.
<h3>What is heat transfer?</h3>
Heat transfer is a process that flows the heat from one system to another, and is because of the difference in the temperature of the two objects that are part of the system.
The methods like conduction, convection, and radiation transfer the heat from the surface area to the other object. The heat gets transferred from the area of high to the low temperature.
Therefore, option B. by increasing the surface area the heat transfer increases.
Learn more about heat transfer here:
brainly.com/question/17823456
#SPJ1
Answer:
2.5 × 10⁻⁵ M H₃O⁺ and 4.0 × 10⁻¹⁰ M OH⁻.
Explanation:
<em>∵ pH = - log[H₃O⁺]</em>
∴ 4.6 = - log[H₃O⁺].
∴ log[H₃O⁺] = - 4.6.
∴ [H₃O⁺] = 2.51 x 10⁻⁵.
∵ [H₃O⁺][OH⁻] = 10⁻¹⁴.
[H₃O⁺] = 2.51 x 10⁻⁵ M.
∴ [OH⁻] = 10⁻¹⁴/[H₃O⁺] = 10⁻¹⁴/(2.51 x 10⁻⁵ M) = 3.98 × 10⁻¹⁰ M ≅ 4.0 × 10⁻¹⁰ M.
<em>So, the right choice is: 2.5 × 10⁻⁵ M H₃O⁺ and 4.0 × 10⁻¹⁰ M OH⁻.</em>