Sound actually travels slower in air.This is because sound is kinetic energy and has to pass from molecule to molecule.In gas the molecules are farther apart taking more time for it to pass,in water the molecules are closer so it takes less time for the sound to get from one molecule to another and with cast iron (since it's very dense) the molecules are very close allowing sound to travel quickly with ease.
Answer: 6
Explanation: if you multiply the number of moles in the hydrogen atoms by the number of the once displayed and you multiply it by 3 and get the answer 6
Answer:
true
Explanation:
energy is the energy to do things
and there is a force in our bodies wich is giving out energy through a distance
Answer:
0.0119
Explanation:
There was a part missing. I think this is the whole question:
<em>Before any reaction occurs, the concentration of A in the reaction below is 0.0510 M. What is the equilibrium constant if the concentration of A at equilibrium is 0.0153 M?</em>
A (aq) ⇌ 2B (aq) + C(aq)
<em>Remember to use correct significant figures in your answer. Do not include units in your response.</em>
First, we have to make an ICE Chart, which stands for initial, change and equilibrium. We will call "x" unknown concentrations.
A (aq) ⇌ 2B (aq) + C (aq)
I 0.0510 0 0
C -x +2x +x
E 0.0510-x 2x x
Since the concentration at equilibrium of A is 0.0153 M, we get

We can use the value of x to calculate the concentrations at equilibrium.
![[A]e = 0.0153 M \\[B]e = 2x = 2(0.0357) = 0.0714 M \\[C]e = x = 0.0357 M \\](https://tex.z-dn.net/?f=%5BA%5De%20%3D%200.0153%20M%20%5C%5C%5BB%5De%20%3D%202x%20%3D%202%280.0357%29%20%3D%200.0714%20M%20%5C%5C%5BC%5De%20%3D%20x%20%3D%200.0357%20M%20%5C%5C)
The equilibrium constant, Kc, is the ratio of the equilibrium concentrations of products over the equilibrium concentrations of reactants each raised to the power of their stoichiometric coefficients.
![Kc = \frac{[B]^{2} \times [C]}{[A]} = \frac{0.0714^{2} \times 0.0357}{0.0153} = 0.0119](https://tex.z-dn.net/?f=Kc%20%3D%20%5Cfrac%7B%5BB%5D%5E%7B2%7D%20%20%5Ctimes%20%5BC%5D%7D%7B%5BA%5D%7D%20%3D%20%5Cfrac%7B0.0714%5E%7B2%7D%20%20%5Ctimes%200.0357%7D%7B0.0153%7D%20%3D%200.0119)
The equilibrium constant for this reaction at equilibrium is 0.0119.
You can learn more about equilibrium here: brainly.com/question/4289021
Friction because smooth ice provides very little resistance against objects, like ice skates being dragged across its surface.