Answer:
ΔH = 249 kJ/mol
Explanation:
The balanced reaction is:
2H₂O(g) → 2H₂(g) + O₂(g) (1)
To calculate the energy change to obtain one mole of H₂(g) from one mole of H₂O(g), the coefficients of the reaction (1) must be halved:
H₂O(g) → H₂(g) + 1/2O₂(g) (2)
The enthalpy of the reaction (2) is given by:
<em>Where
: is the bond enthalpy of reactants and
: is the bond enthalpy of products.</em>
<u>For the reactants we have the next bond energies:</u>
2 x (H-O) = 2 x (467)
<u>And the bond energies for the products are:</u>
H-H + (1/2) (O=O) = 436 + (1/2)(498)
So, the enthalpy of the reaction (2) is:
I hope it helps you!
Answer:
it would make sense because a larger body could produce more body heat.
Answer:
Fan Speed For Low Position vs Time Graph : The slope is curved and it increases as you go up . The points start off close but they spread out as the time increases.
Fan Speed For Medium Position vs Time Graph : The speed increases quicker than the graph for low speed. The graph is less curved than the one for low speed. Also, the points spread out faster than they did for low speed as the time increases.
Fan Speed For High Position vs Time Graph: The Graph has a smaller curve then the low and medium speed. Also , the points are the furthest apart. The slope is not as spaced out as it was for the rest of the speed graphs .
Explanation: I just finished the lab:)
Answer:
R1 = 5.13 Ω
Explanation:
From Ohm's law,
V = IR............... Equation 1
Where V = Voltage, I = current, R = resistance.
From the question,
I = 2 A, R = R1
Substitute into equation 1
V = 2R1................ Equation 2
When a resistance of 2.2Ω is added in series with R1,
assuming the voltage source remain constant
R = 2.2+R1, and I = 1.4 A
V = 1.4(2.2+R1)................. Equation 3
Substitute the value of V into equation 3
2R1 = 1.4(2.2+R1)
2R1 = 3.08+1.4R1
2R1-1.4R1 = 3.08
0.6R1 = 3.08
R1 = 3.08/0.6
R1 = 5.13 Ω