Hey there mate ;), Im Benjemin and lets solve your question.
★ (Alkanes) : forms single bonds between carbon atoms.
The first four elements are gases and others are liquid in state.
★(Alkenes) : forms double bonds between carbon atoms.
The first three alkenes are gases and rest are liquid.
★ (Alkynes) : forms triple bonds between carbon atoms.
First three are gases and the last one is liquid.
According to boiling point :
The larger structure of the hydrocarbons, the higher the boiling points they have.
In the 3 tables, we can see that the boiling point increases.
The relative molecular mass of acid A : 50 g/mol
<h3>Further explanation</h3>
Given
40.0 cm³(40 ml) of 0.2M sodium hydroxide
0.2g of a dibasic acid
Required
the relative molecular mass of acid A
Solution
Titration formula
M₁V₁n₁=M₂V₂n₂
n=acid/base valence(number of H⁺/OH⁻)
NaOH ⇒ n = 1
Dibasic acid = diprotic acid (such as H₂SO₄)⇒ n = 2
mol = M x V
Input the value in the formula :(1 = NaOH, 2=dibasic acid)
0.2 x 40 x 1 = M₂ x V₂ x 2
M₂ x V₂ = 4 mlmol = 4.10⁻³ mol ⇒ mol of Acid A
The relative molecular mass of acid A (M) :
<span>To solve this exercise you need to know that to create CO₂ with C₂H₂ is necessary to have oxygen. So, the following balanced equation represents the reaction:
2C₂H₂(g) + 5O₂(g) → 4CO₂(g) + 2H₂O(g)
Notice that 2 moles of C₂H₂ form 4 moles of </span><span>CO₂, so if </span>3.3 moles of C₂H₂ react, how many moles of CO2 would be produced?
2 moles <span>of C₂H₂ -------</span>4 moles of <span>CO₂
3.3 </span><span>moles <span>of C₂H₂--------x moles of CO₂
x=6.6 </span></span><span>moles of CO₂ produced.</span>
Answer:<em> Hydrogen can lose as much as possible there is no limits to it.</em>
<em>Hope this helps!</em>
<em>I am joyous to assist you anytime!</em>
<em>-Jarvis</em>
<em>Extras: Hydrogen is the chemical element with the symbol H and atomic number 1. hydrogen is the lightest element in the periodic table. Hydrogen is the most abundant chemical substance in the Universe (;</em>