Answer: Objects falling through a fluid eventually reach terminal velocity. At terminal velocity, the object moves at a steady speed in a constant direction because the resultant force acting on it is zero.
Answer:
y = 9.64 m
Explanation:
This exercise should be solved using kinematics in one dimension, let's write the equations for the two cases presented
The rock is released
y = y₀ + V₀₁ t₁ - ½ g t₁²
In this case the speed starts is zero
y = y₀ - ½ g t₁²
The rock is thrown up
y = y₀ + v₀² t₂ -½ g t₂²
The height that reaches the floor is zero
y₀ - ½ g t₁² = y₀ + v₀₂ t₂ - ½ g t₂²
We use the initial velocity with the equation
v₂² = v₀₂² - 2 g y
At the point of maximum height v₂ = 0
v₀₂ = √ (2 g
)
g (-t₁² + t₂²) = 2 √ (2 g
) t₂²
g (- 4.15² + 6.30²) = 2 √ (2 2 g) 6.3
g (22.4675) = 25.2 √ g
g² = 2²5.2 / 22.4675 g
g = 1.12 m / s²
Having the value of g we can use any equation to find the height
y = ½ g t₁²
y = ½ 1.12 4.15²
y = 9.64 m
Answer:
here
Explanation:
Copper is commonly used as an effective conductor in household appliances and in electrical equipment in general. Because of its low cost, most wires are copper-plated. You will often find electromagnet cores normally wrapped with copper wire
Answer:
at ( or below)
Explanation:
at the dewpoint.......water will condense out of the air onto the surface
Answer:
the direction of angular momentum = EAST
Explanation:
given
Direction of position = r = north
Direction of velocity = v = up
angular momentum = L = m(r x v)
where m is the mass, r is the radius, v is the velocity
utilizing the right hand rule, the right finger heading towards the course of position vector and curl them toward direction of velocity, at that point stretch thumb will show the bearing of the angular momentum.
then L = north x up = East