Position displacement velocity acceleration are vectors and the rest are scalars
Answer:
ΔP.E = 6.48 x 10⁸ J
Explanation:
First we need to calculate the acceleration due to gravity on the surface of moon:
g = GM/R²
where,
g = acceleration due to gravity on the surface of moon = ?
G = Universal Gravitational Constant = 6.67 x 10⁻¹¹ N.m²/kg²
M = Mass of moon = 7.36 x 10²² kg
R = Radius of Moon = 1740 km = 1.74 x 10⁶ m
Therefore,
g = (6.67 x 10⁻¹¹ N.m²/kg²)(7.36 x 10²² kg)/(1.74 x 10⁶ m)²
g = 2.82 m/s²
now the change in gravitational potential energy of rocket is calculated by:
ΔP.E = mgΔh
where,
ΔP.E = Change in Gravitational Potential Energy = ?
m = mass of rocket = 1090 kg
Δh = altitude = 211 km = 2.11 x 10⁵ m
Therefore,
ΔP.E = (1090 kg)(2.82 m/s²)(2.11 x 10⁵ m)
<u>ΔP.E = 6.48 x 10⁸ J</u>
Answer:
d
Explanation:
According to me answer is d but gas expand more than others
Answer:
total number of electron in 1 litter is 3.34 ×
electron
Explanation:
given data
mass per mole = 18 g/mol
no of electron = 10
to find out
how many electron in 1 liter of water
solution
we know molecules per gram mole is 6.02 ×
molecules
no of moles is 1
so
total number of electron in water is = no of electron ×molecules per gram mole × no of moles
total number of electron in water is = 10 × 6.02 ×
× 1
total number of electron in water is = 6.02×
electron
and
we know
mass = density × volume ..........1
here we know density of water is 1000 kg/m
and volume = 1 litter = 1 ×
m³
mass of 1 litter = 1000 × 1 × 
mass = 1000 g
so
total number of electron in 1 litter = mass of 1 litter × 
total number of electron in 1 litter = 1000 × 
total number of electron in 1 litter is 3.34 ×
electron