Perimeter = 2 ( L + W )
32 = 2 ( L + W )
16 = L + W
L = 16 - W
Area = L W
63 = L W
63 = (16-W) W
63 = 16W - W²
-W² + 16 W - 63 = 0
By factorizing W = 9 or W = 7
So the dimensions are 7 and 9
To get x on its own, you times the 3 over to the other side so the 3 cancels out on the LHS.
~ x greater than or equal to -18
(C)
Answer: a) 0.78 m/s b) 1.57 m/s
Explanation:
M = father's mass
m = son's mass = M/3
V = father's initial speed
v = son's initial speed
(1/2)MV^2 = (1/2)*(1/2)*m v^2
M*V^2 = (1/2)(M/3)v^2
V^2/v^2 = 1/4
V = v/2
Second equation:
(1/2)M*(V + 1.4)^2 = (1/2)m*v^2
= (1/2)*(M/3)*(3V)^2
cancel out the M's and (1/2)'s
(V + 1.4)^2 = 3V^2
V^2 + 2.8V + 1.96 = 3V^2
V^2 -1.4V -0.98 = 0
V^2 = 0.98/0.4 = 2.45
V = 1.57
Answer is B- 200 m
Given:
m (mass of the car) = 2000 Kg
F = -2000 N
u(initial velocity)= 20 m/s.
v(final velocity)= 0.
Now we know that
<u>F= ma</u>
Where F is the force exerted on the object
m is the mass of the object
a is the acceleration of the object
Substituting the given values
-2000 = 2000 × a
a = -1 m/s∧2
Consider the equation
<u>v=u +at</u>
where v is the initial velocity
u is the initial velocity
a is the acceleration
t is the time
0= 20 -t
t=20 secs
s = ut +1/2(at∧2)
where s is the displacement of the object
u is the initial velocity
t is the time
v is the final velocity
a is the acceleration
s= 20 ×20 +(-1×20×20)/2
<u>s= 200 m</u>
The electromagnetic that has a shorter wavelength is ultraviolet (UV)