Both of the power plants uses <span>Renewable Energy.
</span>
<h3>
Answer:</h3>
83.33 seconds.
<h3>
Explanation:</h3>
<u>We are given;</u>
- Take off velocity as 300 km/hr
- Acceleration as 1 m/s²
We are required to calculate the take off time of the airplane.
<h3>Step 1: Convert velocity from km/hr to m/s </h3>
We are going to use the conversion factor.
The conversion factor is 3.6 km/hr per m/s
Therefore;
Velocity = 300 km/hr ÷ 3.6 km/hr per m/s
= 83.33 m/s
<h3>Step 2: Calculate the take off time</h3>
We know that;
v = u + at
where, u is the initial velocity, v the final velocity, a the acceleration and t is time.
But, initial velocity is Zero
Therefore;
83.33 m/s = 1 m/s² × t
Thus;
time = 83.33 m/s ÷ 1 m/s²
= 83.33 seconds
Therefore, the take off time is 83.33 seconds.
Whenever electrons are shared or transferred between atoms there is a chemical reaction.
The electrons that are being transferred between atoms (two or more) create new bonds, which enable the production of a new substance. This process is then known as a chemical reaction.
Answer:
Percent by mass of water is 56%
Explanation:
First of all calculate the mass of hydrated compound as,
Mass of Sodium = Na × 2 = 22.99 × 1 = 45.98 g
Mass of Sulfur = S × 1 = 32.06 × 1 = 32.06 g
Mass of Oxygen = O × 14 = 16 × 14 = 224 g
Mass of Hydrogen = H × 20 = 1.01 × 20 = 20.2 g
Mass of Na₂S0₄.10H₂O = 322.24 g
Secondly, calculate mass of water present in hydrated compound. For this one should look for the coefficient present before H₂O in molecular formula of hydrated compound. In this case the coefficient is 10, so the mass of water is...
Mass of water = 10 × 18.02
Mass of water = 180.2 g
Now, we will apply following formula to find percent of water in hydrated compound,
%H₂O = Mass of H₂O / Mass of Hydrated Compound × 100
Putting values,
%H₂O = 180.2 g / 322.24 g × 100
%H₂O = 55.92 % ≈ 56%