Answer: The equilibrium constant for the given reaction is 0.0421.
Explanation:
Concentration of = 0.0095 M
Concentration of = 0.020 M
Concentration of = 0.020 M
The expression of the equilibrium constant is given as:
(An equilibrium constant is an unit less constant)
The equilibrium constant for the given reaction is 0.0421.
Answer:The functional groups in an organic compound can frequently be deduced from its infrared absorption spectrum. A compound, C5H10O2, exhibits strong, broad absorption across the 2500-3200 cm^1 region and an intense absorption at 1715 cm'^-1. Relative absorption intensity: (s)=strong, (m)-medium, (w) weak. What functional class(cs) docs the compound belong to List only classes for which evidence is given here. Attach no significance to evidence not cited explicitly. Do not over-interpret exact absorption band positions. None of your inferences should depend on small differences like 10 to 20 cm^1. The functional class(es) of thla compound is(are) alkane (List only if no other functional class applies.) alkene terminal alkyne internal alkyne arene alcohol ether amine aldehyde or ketone carboxylic acid ester nitr
Answer:
C
Explanation:
The law proves C. For examples no matter how water you have it will always have a 1:2 ratio of oxygen to hydrogen. :)
A functional group is a group of atoms that determines many of the properties of an organic molecule.
For example functional group for alcohol is hydroxyl group (-OH) and for carboxylic acid is <span>carboxyl group (-COOH).
</span>Alpha carbon is <span>the first </span>carbon<span> atom after the carbon that attaches to the functional group.</span>
Answer:
To gain stability
Explanation:
If the outermost shell is not completely filled with electrons, the element has one of the three options: gaining electrons, losing electrons or sharing electrons. By gaining or losing electrons, ionic compounds are produced. Sharing of electrons results in the formation of covalent compounds.