Answer:
Boiling point of the solution is 100.78°C
Explanation:
This is about colligative properties.
First of all, we need to calculate molality from the freezing point depression.
ΔT = Kf . m . i
As the solute is nonelectrolyte, i = 1
0°C - (-2.79°C) = 1.86 °C/m . m . 1
2.79°C / 1.86 m/°C = 1.5 m
Now, we go to the boiling point elevation
ΔT = Kb . m . i
Final T° - 100°C = 0.52 °C/m . 1.5m . 1
Final T° = 0.52 °C/m . 1.5m . 1 + 100°C → 100.78°C
Answer:
Updrafts characterize a storm's early development, during which warm air rises to the level where condensation begins and precipitation starts to develop. In a mature storm, updrafts are present alongside downdrafts caused by cooling and by falling precipitation.
Hope it helps
Have a great Day : P
A mineral occurs naturally, meaning that even though there are artificial substances that might be described as mineral-like they are not minerals
Answer: Metals form cations.
The alkali metals (the IA elements) lose a single electron to form a cation with a 1+ charge.
The alkaline earth metals (IIA elements) lose two electrons to form a 2+ cation.
Aluminum, a member of the IIIA family, loses three electrons to form a 3+ cation.
Therefore, metals in the s and p block of the periodic table have 1, 2 or 3 electrons in their outermost orbit (or valence shell). Now to gain a stable octet metals lose either 1, 2 or 3 electrons from the valence shell thus forming cation with +1, +2 or +3 charge.