Answer:
Explanation:
mass, m = 1 kg
Position (2, 3 ) m
height, h = 2 m
acceleration due to gravity, g = 9.8 m/s^2
Here, no force is acting in horizontal direction, the force of gravity is acting in vertical direction, so the work done by the gravitational force is to be calculated.
Force mass x acceleration due to gravity
F = 1 x 9.8 = 9.8 N
Work = force x displacement x CosФ
Where, Ф be the angle between force vector and the displacement vector.
Here the value of Ф is 180° as the force acting vertically downward and the displacement is upward
So, W = 9.8 x 2 x Cos 180°
W = - 19.6 J
Thus, option (A) is correct.
All of the electromagnetic energy radiated from the sun (and from
other stars) is the product of nuclear fusion in its core.
To solve this problem we will apply the concepts related to the electric field such as the smelting of the Force and the load (In this case the force is equivalent to the weight). Later we will apply the ratio of the total charge as a function of the multiplication of the number of electrons and their individual charge.

Here,
m = mass
g = Acceleration due to gravity
Rearranging to find the charge,

Replacing,


Since the field is acting upwards the charge on the drop should be negative to balance it in air. The equation to find the number of electrons then is

Here,
n = Number of electrons
e = Charge of each electron

Replacing,


Therefore the number of electrons that reside on the drop is 
Period of months where the weather is the coldest and the days are the shortest.