Answer:
The volume is 5.6 L
The mass is 100.2g
Explanation:
Quantitative observations are more based on numbers and values
Answer:
Work done = -220,000 Joules.
Explanation:
<u>Given the following data;</u>
Mass = 1100kg
Initial velocity = 20m/s
To find workdone, we would calculate the kinetic energy possessed by the car.
Kinetic energy can be defined as an energy possessed by an object or body due to its motion.
Mathematically, kinetic energy is given by the formula;

Where,
- K.E represents kinetic energy measured in Joules.
- M represents mass measured in kilograms.
- V represents velocity measured in metres per seconds square.
Substituting into the equation, we have;
K.E = 220,000J
Therefore, the workdone to bring the car to rest would be -220,000 Joules because the braking force is working to oppose the motion of the car.
Answer:
L/D= 112
Explanation:
Aerodynamics can be defined as the branch of dynamics which deals with the motion of air, their properties and the interaction between the air and solid bodies.
Aerodynamics law explains how an airplane is able to fly. There are four forces of flight, and they are; lift, weight, thrust and drag. The amount of lift generated by a wing divided by the aerodynamic drag is known as the lift to drag ratio.
Lift increases proportionally to the square of the speed.
The solutions to the question is the file attached to this explanation.
Lift,L= qC(l). S---------------------------(1).
and,
Drag,D = qC(d).S ----------------------(2).
Hence, Lift to drag ratio,L/D= C(l)/C(d).
Therefore, we have to compute various angle of attack.(check attached file)...
Then, (L/D) will then be equal to 112.
Below are the choices that can be found elsewhere:
A. (4.9 × 10-14 newtons) · tan(30°)
<span>B. (4.9 × 10-14 newtons) · sin(30°) </span>
<span>C. (4.9 × 10-14 newtons) · cos(30°) </span>
<span>D. (4.9 × 10-14 newtons) · arctan(30°) </span>
<span>E. (4.9 × 10-14 newtons) · arccos(30°)
</span>
<span>Force is proportional to the angle made by the velocity with respect to the magnetic field. It is maximum when velocity is perpendicular to the magnetic field and minimum when the velocity is parallel to the magnetic field. It is proportional to sin of the angle. In this problem it will be proportional to sin(30)</span>