Answer:
Solution A has a pH of 6 and solution B has a pH of 8. Which of the following is true regarding the concentration of hydrogen ions in each solution? A) A has 100 times greater H+ concentration than B. B) B has 100 times greater H+ concentration than A. C) A has 7/9 of the H+ concentration of B. D) A has 9/7 of the H+ concentration of B. E) none of these
Explanation:
Hey im super sorry if i get this wrong :)
The temperature of the gas is 41.3 °C.
Answer:
The temperature of the gas is 41.3 °C.
Explanation:
So on combining the Boyle's and Charles law, we get the ideal law of gas that is PV=nRT. Here P is the pressure, V is the volume, n is the number of moles, R is gas constant and T is the temperature. The SI unit of pressure is atm. So we need to convert 1 Pa to 1 atm, that is 1 Pa = 9.86923×
atm. Thus, 171000 Pa = 1.6876 atm.
We know that the gas constant R = 0.0821 atmLMol–¹K-¹. Then the volume of the gas is given as 50 L and moles are given as 3.27 moles.
Then substituting all the values in ideal gas equation ,we get
1.6876×50=3.27×0.0821×T
Temperature = 
So the temperature is obtained to be 314.3 K. As 0°C = 273 K,
Then 314.3 K = 314.3-273 °C=41.3 °C.
Thus, the temperature is 41.3 °C.
Answer:Yes
Explanation:
Yes it is possible for a gas contained in a chamber to maintain a constant temperature while heat is being added to the gas.A process in which temperature of the gas remains constant is called Isothermal Process.For an ideal internal energy is a function of temperature therefore internal energy remains constant while all the heat added is converted to do the work done by the system.
The solution would be like
this for this specific problem:
<span>
The force on m is:</span>
<span>
GMm / x^2 + Gm(2m) / L^2 = 2[Gm (2m) / L^2] ->
1
The force on 2m is:</span>
<span>
GM(2m) / (L - x)^2 + Gm(2m) / L^2 = 2[Gm (2m) / L^2]
-> 2
From (1), you’ll get M = 2mx^2 / L^2 and from
(2) you get M = m(L - x)^2 / L^2
Since the Ms are the same, then
2mx^2 / L^2 = m(L - x)^2 / L^2
2x^2 = (L - x)^2
xsqrt2 = L - x
x(1 + sqrt2) = L
x = L / (sqrt2 + 1) From here, we rationalize.
x = L(sqrt2 - 1) / (sqrt2 + 1)(sqrt2 - 1)
x = L(sqrt2 - 1) / (2 - 1)
x = L(sqrt2 - 1) </span>
= 0.414L
<span>Therefore, the third particle should be located the 0.414L x
axis so that the magnitude of the gravitational force on both particle 1 and
particle 2 doubles.</span>
Answer:
I don’t understand Espanol
Explanation:
sorry