Answer:
<em>Choice: c. 6sec</em>
Explanation:
<u>Horizontal Launch
</u>
When an object is thrown horizontally with a speed (v) from a height (h), it describes a curved path ruled by gravity until it finally hits the ground.
The horizontal component of the velocity is always constant because no acceleration exists in that direction, thus:

The vertical component of the velocity changes in time because gravity makes the object fall at increasing speed given by:

Where 
To calculate the time the object takes to hit the ground, we use the same formula as for free-fall, since the time does not depend on the initial speed:

The marble rolls the edge of the table at a height of h=180 m, thus:


t = 6 sec
Choice: c. 6sec
Answer:
Part a)
the tension force is equal to the weight of the crate
Part b)
tension force is more than the weight of the crate while accelerating upwards
tension force is less than the weight of crate if it is accelerating downwards
Explanation:
Part a)
When large crate is suspended at rest or moving with uniform speed then it is given as

here since speed is constant or it is at rest
so we will have


so the tension force is equal to the weight of the crate
Part b)
Now let say the crate is accelerating upwards
now we can say


so tension force is more than the weight of the crate
Now if the crate is accelerating downwards


so tension force is less than the weight of crate if it is accelerating downwards
Velocity ratio is also defined as the ratio of a distance through which any part of a machine moves, to that which the driving part moves during the same time. An object has a mechanical advantage if it exerts a force higher than the velocity ratio.
Instantaneous velocity, on the other hand, describes the motion of a body at one particular moment in time. Acceleration is a vector which shows the direction and magnitude of changes in velocity. Its standard units are meters per second per second, or meters per second squared. (this is for number 3)
<span>B. The properties they have</span>