Answer:
Explanation:
a. The equation of Lorentz transformations is given by:
x = γ(x' + ut')
x' and t' are the position and time in the moving system of reference, and u is the speed of the space ship. x is related to the observer reference.
x' = 0
t' = 5.00 s
u =0.800 c,
c is the speed of light = 3×10⁸ m/s
Then,
γ = 1 / √ (1 - (u/c)²)
γ = 1 / √ (1 - (0.8c/c)²)
γ = 1 / √ (1 - (0.8)²)
γ = 1 / √ (1 - 0.64)
γ = 1 / √0.36
γ = 1 / 0.6
γ = 1.67
Therefore, x = γ(x' + ut')
x = 1.67(0 + 0.8c×5)
x = 1.67 × (0+4c)
x = 1.67 × 4c
x = 1.67 × 4 × 3×10⁸
x = 2.004 × 10^9 m
x ≈ 2 × 10^9 m
Now, to find t we apply the same analysis:
but as x'=0 we just have:
t = γ(t' + ux'/c²)
t = γ•t'
t = 1.67 × 5
t = 8.35 seconds
b. Mavis reads 5 s on her watch which is the proper time.
Stanley measured the events at a time interval longer than ∆to by γ,
such that
∆t = γ ∆to = (5/3)(5) = 25/3 = 8.3 sec which is the same as part (b)
c. According to Stanley,
dist = u ∆t = 0.8c (8.3) = 2 x 10^9 m
which is the same as in part (a)
Answer:
C
Explanation:
Magnitude of any quantity is the measurable value of the quantity. While the direction of the given quantity is the specific pointing direction of position or the angle at which it move.
The magnitude of the vector described below? 13 m/s to the east will be 13 m/s
While the direction will be eastward.
Therefore, the magnitude is 13 m/s
The correct answer is option C
The answer is 266. Hope that helps!
-55 C to F is -67.
I hope this helps you!
Brainliest answer is always appreciated!
We can solve the problem by using Snell's law:

where

is the refractive index of the first medium (in this case, air, so

)

is the refractive index of the second medium (in this case, water, so

)

is the angle of incidence of the light, with respect to the vertical, so


is the angle of refraction of the light inside the water, with respect to the vertical
Re-arranging the equation and using the data of the problem, we can find the the angle of refraction of the light inside the water: