The final atmospheric pressure is 
Explanation:
Assuming that the temperature of the air does not change, we can use Boyle's law, which states that for a gas kept at constant temperature, the pressure of the gas is inversely proportional to its volume. In formula,

where
p is the gas pressure
V is the volume
The equation can also be rewritten as

where in our problem we have:
is the initial pressure (the atmospheric pressure at sea level)
is the initial volume
is the final pressure
is the final volume
Solving the equation for p2, we find the final pressure:

Learn more about ideal gases:
brainly.com/question/9321544
brainly.com/question/7316997
brainly.com/question/3658563
#LearnwithBrainly
Answer:
The replacement fertility rate is indeed only slightly above 2.0 births per woman for most industrialized countries (2.075 in the UK, for example), but ranges from 2.5 to 3.3 in developing countries because of higher mortality rates, especially child mortality. pls give brainlest
Answer:
here
Explanation:
Copper is commonly used as an effective conductor in household appliances and in electrical equipment in general. Because of its low cost, most wires are copper-plated. You will often find electromagnet cores normally wrapped with copper wire
Newton's law of universal gravitation states that a particle attracts every other particle in the universe using a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers
Answer:
Vector quantities are important in the study of motion. Some examples of vector quantities include force, velocity, acceleration, displacement, and momentum. The difference between a scalar and vector is that a vector quantity has a direction and a magnitude, while a scalar has only a magnitude. Vector, in physics, a quantity that has both magnitude and direction. It is typically represented by an arrow whose direction is the same as that of the quantity and whose length is proportional to the quantity's magnitude. A quantity which does not depend on direction is called a scalar quantity. Vector quantities have two characteristics, a magnitude and a direction. The resulting motion of the aircraft in terms of displacement, velocity, and acceleration are also vector quantities. A vector quantity is different to a scalar quantity because a quantity that has magnitude but no particular direction is described as scalar. A quantity that has magnitude and acts in a particular direction is described as vector.
Explanation: