Answer:
Executive Orders state mandatory requirements for the Executive Branch, and have the effect of law. They are issued in relation to a law passed by Congress or based on powers granted to the President in the Constitution and must be consistent with those authorities.
Explanation:
Answer:
The distance is 55.636 billion miles, or 528.2 AU.
Explanation:
Since the distance from the Sun to Neptune is 2.7818 billion miles, the distance from the Sun to Planet Nine would be 20 times that, which is:

or 55.636 billion miles.
Since 1 astronomical unit (AU) is 93 million miles, that distance is also:

Answer:
The answer to the questions is;
In terms of standing waves, the listener moves from a location with high amplitude to one with lower amplitude or vibration (anti-node to node)
The distance 4.1 cm is equivalent to λ/4
Explanation:
For standing waves we have is a stationary wave comprising of two opposite direction moving waves that have equal amplitude and frequency, resulting in the superimposition of the waves. As such certain points are fixed along the wave path that is the peaks amplitude of the wave oscillation is constant at a particular point. A node occurring at a point and an anti-node occurring at another fixed point
When the listener moves 4.1 cm he or she has left the anti-node to the node hence the faintness of the sound
The distance from the node to the anti-node is 1/4 wavelength, or 1/4×λ
Therefore 4.1 cm is λ/4
Answer:
8.37×10⁻⁴ N/C
Explanation:
Electric Field: This is the ratio of electrostatic force to electric charge. The S.I unit of electric field is N/C.
From the question, the expression for electric field is given as,
E = F/Q.......................... Equation 1
Where E = Electric Field, F = force experienced by the charged balloon, Q = Charge on the balloon.
Given: F = 8.2×10⁻² Newton, Q = 9.8×10 Coulombs = 98 Coulombs
Substitute these values into equation 1
E = 8.2×10⁻² /98
E = 8.37×10⁻⁴ N/C
Hence the Electric Field of the charged balloon = 8.37×10⁻⁴ N/C
Answer:
B. The escape speed of the Moon is less than that of the Earth; therefore, less energy is required to leave the Moon.
Explanation:
Since the speed required to escape from the gravitational attraction of the Moon is less than the speed required to escape from the gravitational attraction of the Earth, less energy is required to travel from the Moon to the Earth, than is required to travel from the Earth to the Moon. This is because the kinetic energy is directly proportional to the square of the velocity.