821
s
s
s
s
s
s
s
s
s
s
s
s
ws
asd
asd
asd
asd
ad
a
sda
d
≥≡³
The time taken to hit the ground is 3.9 s, the range is 18m and the final velocity is 42.82 m/s
<h3>
Motion Under Gravity</h3>
The motion of an object under gravity is the vertical motion of the object under the influence of acceleration due to gravity.
Given that a ball is thrown horizontally from the roof of a building 75 m tall with a speed of 4.6 m/s.
a. how much later does the ball hit the ground?
The time can be calculated by considering the vertical component of the motion with the use of formula below.
h = ut + 1/2gt²
Where
- Initial velocity u = 0 ( vertical velocity )
- Acceleration due to gravity g = 9.8 m/s²
Substitute all the parameters into the formula
75 = 0 + 1/2 × 9.8 × t²
75 = 4.9t²
t² = 75/4.9
t² = 15.30
t = √15.3
t = 3.9 s
b. how far from the building will it land?
The range can be found by using the formula
R = ut
Where u = 4.6 m/s ( horizontal velocity )
R = 4.6 × 3.9
R = 18 m
c. what is the velocity of the ball just before it hits the ground?
The final velocity will be
v = u + gt
v = 4.6 + 9.8 × 3.9
v = 4.6 + 38.22
v = 42.82 m/s
Therefore, the answers are 3.9 s, 18 m and 42.82 m/s
Learn more about Vertical motion here: brainly.com/question/24230984
#SPJ1
Answer:

Explanation:
We are asked to find the final velocity of the boat.
We are given the initial velocity, acceleration, and time. Therefore, we will use the following kinematic equation.

The initial velocity is 2.7 meters per second. The acceleration is 0.15 meters per second squared. The time is 12 seconds.
= 2.7 m/s - a= 0.15 m/s²
- t= 12 s
Substitute the values into the formula.

Multiply the numbers in parentheses.




Add.

The final velocity of the boat is <u>4.5 meters per second in the positive direction.</u>
Answer:
Explanation:
Given
mass of saturated liquid water 
at
specific volume is
(From Table A-4,Saturated water Temperature table)



Final Volume 


Specific volume at this stage



Now we see the value and find the temperature it corresponds to specific volume at vapor stage in the table.


