The concentration of the original calcium ions is 0.005 M
<h3>What is concentration?</h3>
The term concentration has to do with the amount of substance in solution. We know that the concentration can be measured in a lot of units such as mole/litre, grams per litre, percentage and so on.
As such we have the equation;
Ca^2+(aq) + (NH4)2CrO4(aq) --------> CaCrO4(s) + 2NH4^+(aq)
Number of moles of the precipitate = 346.7 * 10^-3 g/156 g/mol
= 0.0022 moles
Now;
1 mole of Ca^2+ produces 1 mole of CaCrO4 hence 0.0022 moles of CaCrO4 was produced by 0.0022 moles of CaCrO4.
Given that the volume of the solution is 0.440 L, the concentration of the solution is; 0.0022 moles/0.440 L
= 0.005 M
Learn more about molarity:brainly.com/question/8732513
#SPJ1
A should be the answer because the more you test an experiment the more data you have to rely on changing the experiment would cause you to have different outcomes making the results different and unreliable so B, C, and D is not going to be the answer Hope this helps
Answer:
The atomic number is the number of protons in the nucleus
The statement that defines the specific heat capacity for a given sample is the quantity of heat that is required to raise 1 g of the sample by 1°C (Kelvin) at a constant pressure.
<h3>What is specific heat capacity?</h3>
Specific heat capacity is the of heat to increase the temperature per unit mass.
The formula to calculate the specific heat is Q = mct.
The options are attached here:
- The temperature of a given sample is 1 %.
- The temperature that a given sample can withstand.
- The quantity of heat that is required to raise the sample's temperature by 1 °C1 °C (Kelvin).
- The quantity of heat that is required to raise 1 g of the sample by 1°C (Kelvin) at a constant pressure.
Thus, the correct option is 4. The quantity of heat that is required to raise 1 g of the sample by 1°C (Kelvin) at a constant pressure.
Learn more about specific heat capacity
brainly.com/question/1747943
#SPJ1
My science text book said that it was either diamond or gold. Gold may not be right, but I am pretty sure diamond is.
Sorry if I got this wrong.