Answer:
both are done due to the enviroment??
Answer:
Boron. The answer is boron.
Answer:
The molar mass of lysine using the ideal gas equation for this problem is 146.25 g/mole.
Explanation:
The ideal gas equation PV = nRT, was derived from the ABC laws (Avogadros, Boyles and Charles laws). We need to obtain the value for the number of moles n.
The parameters of this equation are:
P = 1.918 atm
V = 750.0mL = 0.75L
n = ?
R = 0.0821
T = 25 degree celcius = 25 + 273 = 298 degree kelvin.
From this formular, n = (PV)/(RT)
n = (1.918 X 0.75)/(0.0821 X 298 )
n = 0.0588
n, no of mole = mass/molar mass
0.0588 = 8.6/MM
MM = 8.6/0.0588
MM = 146.25g/mole.
Answer:
180,000 ants
Explanation:
For this problem we can create the following simple formula to solve this problem...
f(x) = 6x
where the variable x represents the number of ants that a single Anteater needs to eat per day. After a quick online search we can see that a single Anteater eats roughly 30,000 ants per day. If we use this value and plug it into the simple formula we can get the total number of ants 6 anteaters need to eat to survive.
f(x) = 6 * 30,000
f(x) = 180,000
Answer:
Kj/mol
Its an endothermic reaction
Explanation:
Enthalpy can be evaluated by using following formula -

where
q is the enthalpy or change in internal energy
m is the mass in kg
c is the specific heat
and
is the change in temperature
Mass of HCl is equal to
g/mol
or
Mass of HCl is equal to
Kg/mol
Substituting the given values in above equation, we get-

Kj/mol
Enthalpy is positive thus it is an endothermic reaction