Answer:
Balancing Nuclear Equations
To balance a nuclear equation, the mass number and atomic numbers of all particles on either side of the arrow must be equal.
Explanation:
follows:
6
3
Li
+
2
1
H
→
4
2
He
+
?
To balance the equation above for mass, charge, and mass number, the second nucleus on the right side must have atomic number 2 and mass number 4; it is therefore also helium-4. The complete equation therefore reads:
6
3
Li
+
2
1
H
→
4
2
He
+
4
2
He
Or, more simply:
6
3
Li
+
2
1
H
→
2
4
2
He
image
Lithium-6 plus deuterium gives two helium-4s.: The visual representation of the equation we used as an example.
Compact
<h3>
Answer:</h3>
The centripetal acceleration is 26.38 m/s²
<h3>
Explanation:</h3>
We are given;
- Mass of rubber stopper = 13 g
- Length of the string(radius) = 0.93 m
- Time for one revolution = 1.18 seconds
We are required to calculate the centripetal acceleration.
To get the centripetal acceleration is given by the formula;
Centripetal acc = V²/r
Where, V is the velocity and r is the radius.
Since time for 1 revolution is 1.18 seconds,
Then, V = 2πr/t, taking π to be 3.142 ( 1 revolution = 2πr)
Therefore;
Velocity = (2 × 3.142 × 0.93 m) ÷ 1.18 sec
= 4.953 m/s
Thus;
Centripetal acceleration = (4.953 m/s)² ÷ 0.93 m
= 26.38 m/s²
Hence, the centripetal acceleration is 26.38 m/s²
When you heated the can with the bit of water inside and you boiled it over a flame, the water turned to vapor (gas) and the pressure in the inside of the can is different from the pressure on the outside of the can. When you placed the can into a ice water beaker or a container, the can shrunk it's size, decreasing it's mass and density. The can shrunk as a result of the inside pressure being equalized with the outside pressure.
The part where you placed it in the ice bath or container was when the water vapor was forced out of the can.
Answer:
The answer you would be looking for is option A because all of the other options are either false, or beneficial to us, and i took the test. Thanks
Explanation: