The molarity of Barium Hydroxide is 0.289 M.
<u>Explanation:</u>
We have to write the balanced equation as,
Ba(OH)₂ + 2 HNO₃ → Ba(NO₃)₂ + 2 H₂O
We need 2 moles of nitric acid to react with a mole of Barium hydroxide, so we can write the law of volumetric analysis as,
V1M1 = 2 V2M2
Here V1 and M1 are the volume and molarity of nitric acid
V2 and M2 are the volume and molarity of Barium hydroxide.
So the molarity of Ba(OH)₂, can be found as,

= 0.289 M
It is going through a physical change
Organic is safer inorganic is the same but less better
Answer: True the bicarbonate mixture can help save time and few routine.
Explanation:
For the purpose of making dialysate for hemodialysis patient therapies a bicarbonate mixing and delivering systems designed to prepare a liquid sodium bicarbonate formulation comes in handy.
Certain systems like the SDS unit also allow for the transfer and distribution of acid concentrate solutions. We also provide stand-alone acid concentrate delivery systems using a variety of holding tanks and delivery methods.
A challenge for hemodialysis providers is to properly provide bicarbonate solution in a cost effective manner. Preparation and disinfection can be time-consuming and labor intensive.
Bicarbonate however can corrode certain metals and painted surfaces leaving your preparation area encrusted and grimy.
Furthermore, if not mixed properly, bicarbonate can negatively affect the dialysate solution.
The answer to the above is true the bicarbonate mixture can help save time and few routine.
Answer:Acid catalyst is needed to increase the electrophilicity of Carbonyl group of Carboxylic acid as alcohol is a weak nucleophile.
Alternatively esters can be synthesised by converting carboxylic acid into acyl chloride using thionyl chloride(SOCl_{2} and then further treating acyl chloride with alcohol.
Carboxylic acid and esters can be easily distinguished on the basis of IR as carboxylic acid would contain a broad intense peak in 2500-3200cm_{-1} corresponding to OH stretching frequency whereas esters would not contain any such broad intense peak.
Alcohol and esters can also be distinguished using IR as alcohols would contain a broad intense peak at around 3200-3600cm_{-1}
Explanation: For the synthesis of esters using alcohol and carboxylic acid we need to add a little amount of acid in the reaction . The acid used here increases the electrophilicity of carbonyl carbon and hence makes it easier for a weaker nucleophile like alcohol to attack the carbonyl carbon of acid.
The oxygen of the carbonyl group is protonated using the acidic proton which leads to the generation of positive charge on the oxygen. The positive charge generated is delocalised over the whole acid molecule and hence the electrophilicity of carbonyl group is increased. Kindly refer attachment for the structures.
If we simply mix the acid and alcohol then no appreciable reaction would take place between them and ester formation would not take place because the carboxylic acid in that case is not a good electrophile whereas alcohol is also not a very strong nucleophile which can attack the carbonyl group.
Alternatively we can use thionyl chloride or any other reagent which can convert the carboxylic acid into acyl chloride. Acyl chloride is very elctrophilic and alcohol can very easily attack the acyl chloride and esters could be synthesized.
The carboxylic acid and ester can very easily be distinguished on the basis of broad intense OH stretching frequency peak at around 2500-3200cm_{-1} . The broad intense OH stretching frequency peak is present in carboxylic acids as they contain OH groups and absent in case of esters .
Likewise esters and alcohols can also be distinguished on the basis IR spectra as alcohols will have broad intense spectra at around 3200-3600cm_{-1}corresponding to OH stretching frequency whereas esters will not have any such peak. Rather esters would be having a Carbonyl stretching frequency at around 1720-1760