Answer:
Internally reversible is the answer.
Explanation:
The mass of oxygen reacted/required in this reaction is obtained as 48g.
<h3>What is stoichiometry?</h3>
The term stoichiometry has to do with mass- volume or mass - mole relationship which ultimately depends on the balanced reaction equation.
Now, we have the reaction; S + O2 ------>SO2
If 1 mole of sulfur dioxide contains 22.4 L
x moles of sulfur dioxide contains 33.6L
x = 1.5 moles of sulfur dioxide.
Since the reaction is 1:1, the number if moles of oxygen required/reacted is 1.5 moles.
Mass of oxygen required/reacted = 1.5 moles * 32 g/mol = 48g
Learn more anout stoichiometry: brainly.com/question/9743981
The proton transfer reaction between Cyanide and water can be written as; X^- + H2O -----> HX + OH^-
<h3>What is a proton transfer reaction?</h3>
A proton transfer reaction is one in which a proton is moved from one chemical specie to another.It is in fact and acid - base reaction in the Brownstead - Lowry sense.
The proton transfer reaction between Cyanide and water can be written as(Let the cyanide ion be shown as X);
X^- + H2O -----> HX + OH^-
Learn more about proton transfer: brainly.com/question/861100?
Answer:
C.)One electron in each p orbital
Explanation:
In a P-sublevel with 3 electrons, they should be arranged with one electron going into each p-orbitals.
This is in accordance with the Hund's rule of maximum multiplicity.
The rule states that "electrons go into degenerate orbitals or sub-levels(p,d and f) singly before paring up".
Since the p-orbital is 3-fold degenerate with a capacity to accommodate a maximum number of 6 electrons, given 3 electrons, they will follow the Hund's rule in order to fill the orbitals.
So one electron will go in each p - orbitals easily.