Answer:
Induced emf in the loop is 0.02208 volt.
Induced current in the loop is 0.0368 A.
Explanation:
Given that,
Area of the single loop, 
The initial value of uniform magnetic field, B = 3.8 T
The magnetic field is decreasing at a constant rate, 
(a) The induced emf in the loop is given by the rate of change of magnetic flux.

(b) Resistance of the loop is 0.6 ohms. Let I is the current induced in the loop. Using Ohm's law :

Hence, this is the required solution.
Answer:
55.28 m
Explanation:
Mass of the rocket = 950 g = 950 / 1000 = 0.95 kg
force of gravity = 0.95 Kg × 9.81 m/s² = 9.3195 N
force due to acceleration = 18.3 N - 9.3195 N = 8.9805 N
F = ma
acceleration of the rocket = F / m = 8.9805 N / 0.95 Kg = 9.45 m/s²
using the equation of motion
d = ut + 1/2 at² u = 0 m/s
d = 1/2 at²
t = √(2d / a) = √ ( 2 × 40 m / 9.45 m/s²) = 2.91 s
the horizontal distance between the target and the rocket = vt = 19 m/s × 2.91 s = 55.28 m
Answer:
Rarefaction is the reduction of an item's density, the opposite of compression. Like compression, which can travel in waves, rarefaction waves also exist in nature. A common rarefaction wave is the area of low relative pressure following a shock wave.
Explanation:
A. An indirect measure of heat energy