Explanation:
<u>Forces</u><u> </u><u>on</u><u> </u><u>Block</u><u> </u><u>A</u><u>:</u>
Let the x-axis be (+) towards the right and y-axis be (+) in the upward direction. We can write the net forces on mass
as


Substituting (2) into (1), we get

where
, the frictional force on
Set this aside for now and let's look at the forces on 
<u>Forces</u><u> </u><u>on</u><u> </u><u>Block</u><u> </u><u>B</u><u>:</u>
Let the x-axis be (+) up along the inclined plane. We can write the forces on
as


From (5), we can solve for <em>N</em> as

Set (6) aside for now. We will use this expression later. From (3), we can see that the tension<em> </em><em>T</em><em> </em> is given by

Substituting (7) into (4) we get

Collecting similar terms together, we get

or
![a = \left[ \dfrac{m_B\sin30 - \mu_km_A}{(m_A + m_B)} \right]g\:\:\:\:\:\:\:\:\:(8)](https://tex.z-dn.net/?f=a%20%3D%20%5Cleft%5B%20%5Cdfrac%7Bm_B%5Csin30%20-%20%5Cmu_km_A%7D%7B%28m_A%20%2B%20m_B%29%7D%20%5Cright%5Dg%5C%3A%5C%3A%5C%3A%5C%3A%5C%3A%5C%3A%5C%3A%5C%3A%5C%3A%288%29)
Putting in the numbers, we find that
. To find the tension <em>T</em>, put the value for the acceleration into (7) and we'll get
. To find the force exerted by the inclined plane on block B, put the numbers into (6) and you'll get 
(Not sure how many examples you need so I will put three for each)
Physical:
- As you now know, water in its natural condition is a colorless, odorless, and tasteless liquid. The hexagonal structure of water's crystals.
- The temperature at which a liquid's vapor pressure equals the pressure around it, turning the liquid into vapor, is known as the boiling point. We are aware that water reaches its boiling point at 100°C.
- The temperature at which a material transition from a liquid to a solid is known as the freezing point. The freezing point of water, which is 0°C or 32°F, is the temperature at which liquid water changes to solid ice.
Chemical:
- One of the most significant characteristics of water is its amphoteric tendency. Amphoteric refers to a substance's capacity to function as an acid or base. Water is neither acidic nor basic in its natural form. Its capacity to give and receive protons is the key justification. However, rainfall has a pH between 5.2 and 5.8, making it mildly acidic.
- Water is referred to be the all-purpose solvent. This is due to its chemical makeup, physical characteristics, high dielectric constant, and other factors that make it the most solvent material. It can attract other compound molecules, disabling their molecular forces and causing them to dissolve since hydrogen and oxygen both have positive and negative charges that are available.
- Water is a chemical molecule made up of two hydrogen atoms and one oxygen atom. The liquid condition of that substance is often referred to as water, and the solid and gas phases are respectively referred to as ice and steam.
Answer:
Explanation:
Temperature is defined as the average kinetic energy of the molecules of a substance. When a substance is cooled, the average kinetic energy of its molecules is reduced tremendously. Thus, the molecules of the substance no longer move at high speeds.
Gases, according to the ideal theory of gas molecules do not associate but are infinitely free and move at very high speeds. However, when cooled, the kinetic energy of these molecules become sufficiently low so as to allow intermolecular association. Secondly, compressing the carbon dioxide gas increases the pressure and decreases its volume. This further makes the carbon dioxide molecules to associate more rapidly. Since dry ice is sublime, CO2 doesn't pass through a liquid state, rather a highly ordered solid-state called dry ice is formed.
Answer:
Both forces act along the line joining the objects like masses or charges. And both forces are inversely proportional to the square of the distance between the objects, this is known as the inverse-square law.
Explanation: