An example of a balanced force would be a book sitting on a shelf untouched.
Isaac Newton’s First Law of Motion states that an object at motion stays in motion, and an object at rest stays at rest until acted on by an unbalanced force. A book sitting still is an example of a balanced force because nothing is acting on it; its potential energy is stored while it’s at rest. For this book to become an unbalanced force, an outside force would have to occur (i.e pushing the book or dropping it) that causes it to not be in a state of stillness.
Answer:
a)40100m/s
b)-4.348x10^- m/s^2
Explanation:
to calculate the change in the planet's velocity we have to rest the speeds
ΔV=-22.8-17.3=-40.1km/s=40100m/s
A body that moves with constant acceleration means that it moves in "a uniformly accelerated movement", which means that if the velocity is plotted with respect to time we will find a line and its slope will be the value of the acceleration, it determines how much it changes the speed with respect to time.
When performing a mathematical demonstration, it is found that the equations that define this movement are as follows.
Vf=Vo+a.t (1)\\\\
{Vf^{2}-Vo^2}/{2.a} =X(2)\\\\
X=Xo+ VoT+0.5at^{2} (3)\\
Where
Vf = final speed
Vo = Initial speed
T = time
A = acceleration
X = displacement
In conclusion to solve any problem related to a body that moves with constant acceleration we use the 3 above equations and use algebra to solve
for this problem we have to convert the time interval ins seconds, we know that a year has 53926560s
t=1.71years=53926560*1.71=92214417.6
then we can use the ecuation number 1 to calculate the aceleration
Vf=-22.8km/s
Vo=17.3km/s
Vf=Vo+at
a=(vf-vo)/t
a=(-22.8-17.3)/92214417.6
a=-4.348x10^-7 km/s^2=-4.348x10^- m/s^2
The answer is A 50 degrees
Answer:
<h2>537.6 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 84 × 6.4
We have the final answer as
<h3>537.6 N</h3>
Hope this helps you