Answer: True.
Explanation:
The US constitution has involved details related to the Supreme Court; in fact, the US constitution created this institution. However, the structure does not specify how many judges will sit in the supreme court. Those details were left to the US Congress. In 1807, Congress increased the number of judges to seven; In 1837 the number increased to nine, and in 1863 it rose to 10.
a) since force = mass * acceleration
f= 900 * 0 (because constant speed = 0 acceleration)
similarly b) f = 0
Answer:
U = 1 / r²
Explanation:
In this exercise they do not ask for potential energy giving the expression of force, since these two quantities are related
F = - dU / dr
this derivative is a gradient, that is, a directional derivative, so we must have
dU = - F. dr
the esxresion for strength is
F = B / r³
let's replace
∫ dU = - ∫ B / r³ dr
in this case the force and the displacement are parallel, therefore the scalar product is reduced to the algebraic product
let's evaluate the integrals
U - Uo = -B (- / 2r² + 1 / 2r₀²)
To complete the calculation we must fix the energy at a point, in general the most common choice is to make the potential energy zero (Uo = 0) for when the distance is infinite (r = ∞)
U = B / 2r²
we substitute the value of B = 2
U = 1 / r²
So, the first question is: how many meters are 10 nm?
1nm =<span>0.000000001 m.
So 10 nanometers are </span><span>0.00000001 m!
Now, how many milimeter are those?
let's start with meters, 1 meter are 1000 milimeters.
so </span>
0.00000001*1000=0.<span><span>00001</span> m!
now, micrometers .1 micrometer are 1000 nanometers.
so 10 nanometers are 0.01 micrometers! (1 nanometer is 0.001 micrometers)
</span>
Answer:

Explanation:
Given:
- mass of solid disk,

- radius of disk,

- force of push applied to disk,

- distance of application of force from the center,

<em>For the condition of no slip the force of static friction must be greater than the applied force so that there is no skidding between the contact surfaces at the contact point.</em>

where:
= static frictional force



