The gravitation force with which the earth is being pulled can be determined by applying Newton's law of universal gravitation.
<h3>
What is gravitation force?</h3>
According Newton's law of universal gravitation, the force exerted between two objects in the universe is directly proportional to the product of masses of the two objects and inversely proportional to the square of the distance between the two objects.
Mathematically, the formula for gravitation force is given as;
F = GmM/R²
where;
- m is the mass of the object
- M is mass of earth
- R is the distance of the object from earth
- G is universal gravitation constant
If the mass of the object is know and the distance between earth and the object is also known, the force with which the earth is being pulled can be calculated by applying Newton's law of universal gravitation as shown in the above equation.
Thus, the force with which the earth is being pulled can calculated as well.
Learn more about gravitation force here: brainly.com/question/27943482
#SPJ1
Answer:
compressions; rarefactions
Explanation:
That's the definition of pressure ... force on a given area.
So when that force increases, it's an increase in pressure.
Answer:
a. The total momentum of the trolleys which are at rest before the separation is zero
b. The total momentum of the trolleys after separation is zero
c. The momentum of the 2 kg trolley after separation is 12 kg·m/s
d. The momentum of the 3 kg trolley is -12 kg·m/s
e. The velocity of the 3 kg trolley = -4 m/s
Explanation:
a. The total momentum of the trolleys which are at rest before the separation is zero
b. By the principle of the conservation of linear momentum, the total momentum of the trolleys after separation = The total momentum of the trolleys before separation = 0
c. The momentum of the 2 kg trolley after separation = Mass × Velocity = 2 kg × 6 m/s = 12 kg·m/s
d. Given that the total momentum of the trolleys after separation is zero, the momentum of the 3 kg trolley is equal and opposite to the momentum of the 2 kg trolley = -12 kg·m/s
e. The momentum of the 3 kg trolley = Mass of the 3 kg Trolley × Velocity of the 3 kg trolley
∴ The momentum of the 3 kg trolley = 3 kg × Velocity of the 3 kg trolley = -12 kg·m/s
The velocity of the 3 kg trolley = -12 kg·m/s/(3 kg) = -4 m/s
Answer:
The SI was and is intended to extend and refine the definitions used by the MKS.