Answer:
C
Explanation:
Temperature is directly related to kinetic energy (KE). As we raise temperature, we are raising KE, as well. Particles with more KE move more quickly and with more force.
This means that these particles are more likely to collide with each other and react to allow the chemical reaction to follow through. In turn, if the chemical reaction is more likely to go to completion, the reaction rate increases, eliminating A and B.
The concentration of the solute is not affected by the temperature; in other words, temperature will not increase or decrease the amount of solute in the solution, so eliminate D.
Thus the answer is C.
Hope this helps!
Answer:
Valence electrons or outer electrons are most important as they participate in bonding. The octet rule states that atoms gain, lose, or share valence electrons to have filled energy levels.. this gives atoms a stable configuration like that of the nearest noble gas.
The good ozone protects us from the UV/ harmful radiations whereas bad ozone is an air pollutant.
Explanation:
- There are two types of ozone layer found in the earth's atmosphere extending from troposphere to stratosphere. They are good ozone and bad ozone.
- Bad ozone as mentioned earlier it is an air pollutant and found in the ground level of earth, most accurately the troposphere. Bad ozone is formed in the ground level of earth's atmosphere by the reaction between nitrogen oxides and organic compounds which are volatile
- The Good ozone is found in the stratosphere layer of the earth's atmosphere. They protect us from harmful radiations. Good ozone layer in the stratosphere of the atmosphere is being destroyed by hydrocarbons, CFCs, and human intervention
By considering the reaction equation is:
5Br(aq)+BrO3(aq)+6H(aq)= 3Br2(aq)+3H2O(l)
when the average rate of consumption of Br = 1.86x10^-4 m/s
So from the reaction equation
5Br → 3Br2 when we measure the average rate of formation (X) during the same interval So,
∴ 1.86x10^-4/5 = X / 3
∴X = 1.1 x 10^-4 m/s
∴the average rate of formation of Br2 = 1.1x10^-4 m/s