"v0" means that there are no friction forces at that speed
<span>mgsinΘ = (mv0²/r)cosΘ → the variable m cancels </span>
<span>sinΘ/cosΘ = tanΘ = v0² / gr
</span><span>Θ = arctan(v0² / gr) </span>
<span>When v > v0, friction points downslope: </span>
<span>mgsinΘ + µ(mgcosΘ + (mv²/r)sinΘ) = (mv²/r)cosΘ → m cancels: </span>
<span>gsinΘ + µ(gcosΘ + (v²/r)sinΘ) = (v²/r)cosΘ </span>
<span>µ = ((v²/r)cosΘ - gsinΘ) / (gcosΘ + (v²/r)sinΘ) </span>
<span>where Θ is defined above. </span>
<span>When v > v0, friction points upslope: </span>
<span>mgsinΘ - µ(mgcosΘ + (mv²/r)sinΘ) = (mv²/r)cosΘ → m cancels: </span>
<span>gsinΘ - µ(gcosΘ + (v²/r)sinΘ) = (v²/r)cosΘ </span>
<span>µ = (gsinΘ - (v²/r)cosΘ) / (gcosΘ + (v²/r)sinΘ) </span>
<span>where Θ is defined above. </span>
Are both intertwined. exercise and you will feel brand new!!!
Answer:
The rate of heat conduction through the layer of still air is 517.4 W
Explanation:
Given:
Thickness of the still air layer (L) = 1 mm
Area of the still air = 1 m
Temperature of the still air ( T) = 20°C
Thermal conductivity of still air (K) at 20°C = 25.87mW/mK
Rate of heat conduction (Q) = ?
To determine the rate of heat conduction through the still air, we apply the formula below.


Q = 517.4 W
Therefore, the rate of heat conduction through the layer of still air is 517.4 W
Explanation:
- Mass(m)= 20kg
- Acceleration (a)= 5m/s²
- Force(F)= ?
We know that,
Hence, the needed force is 100N.
It would have to be cardio i think not totally sure