Explanation:
First, we need to determine the distance traveled by the car in the first 30 minutes,
.
Notice that the unit measurement for speed, in this case, is km/hr. Thus, a unit conversion of from minutes into hours is required before proceeding with the calculation, as shown below

Now, it is known that the car traveled 40 km for the first 30 minutes. Hence, the remaining distance,
, in which the driver reduces the speed to 40km/hr is
.
Subsequently, we would also like to know the time taken for the car to reach its destination, denoted by
.
.
Finally, with all the required values at hand, the average speed of the car for the entire trip is calculated as the ratio of the change in distance over the change in time.

Therefore, the average speed of the car is 50 km/hr.
Answer: 8000N
Explanation: since it is frictionless that means it has 100% efficiency therefore the mechanical advantage is 1 meaning the load equals to the effort
Answer:
<h2>
206.67N</h2>
Explanation:
The sum of force along both components x and y is expressed as;

The magnitude of the net force which is also known as the resultant will be expressed as 
To get the resultant, we need to get the sum of the forces along each components. But first lets get the acceleration along the components first.
Given the position of the object along the x-component to be x = 6t² − 4;


Similarly,



Hence, the magnitude of the net force acting on this object at t = 2.15 s is approximately 206.67N
The correct answer is: Angular velocity =

rad/s
Explanation:
The angular velocity is given as:
ω =

--- (1)
Where T = 165 * (365 days) * (24 hours/day) * (60 minutes/hour) * (60 seconds/minute) = 5203440000 s
Plug in the value in (1):
ω =

rad/s