It’s true, because it also depends on things like mass. Higher temperature but less mass< Lower temperature but more mass.
Answer:
The minimum speed when she leave the ground is 6.10 m/s.
Explanation:
Given that,
Horizontal velocity = 1.4 m/s
Height = 1.8 m
We need to calculate the minimum speed must she leave the ground
Using conservation of energy
Put the value into the formula
Hence, The minimum speed when she leave the ground is 6.10 m/s.
Answer:
high, low
Explanation:
- Energy always flows from a higher level to a lower level.
- It is analogous to the waterfall where waterfalls from a higher level to a lower level.
- So in the case of the pressure of the gas, when there are any numbers of molecules in a given volume of space. The gas is said to be at high pressure.
- When there are fewer molecules in the given volume. The gas is said to be at lower pressure.
- Due to a large number of atoms, the high-pressure gas exerts more force on the container than the force exerted by the low-pressure gas.
- If a hose is connected between these two containers, gas rushes from high pressure to the low pressure. Since the force exerted by the high-pressure gas is greater than that of low-pressure gas.
So, the wind tends to move from high-pressure areas to low pressure.
Gravity obeys the inverse square law. At 6400 km above the center of the Earth (Earth's surface) you weigh x. Twice that reduces your weight to 1/4th. Four times that height reduces your weight to 1/16th. 4 times 6400 km is 25,600 km. But that is above the center of the earth, and the question requests the height above the surface, so we deduct 6400 km to arrive at our final answer: 19,200 km.
Incidentally, it doesn't exactly work the opposite way. At the center of the Earth the mass would be equally distributed around you, and you would therefore be weightless.
Use the impulse-momentum theorem.
Substitute your known values:
Hope this helps!