Answer:
The value is 
Explanation:
From the question we are told that
The diameter of the ring is 
The length of the solenoid is 
The diameter of the solenoid is 
The number of turns is N = 1500
The change in current in the solenoid is 
The time taken is 
Generally the radius of the ring is

=> 
=> 
Generally the area of the ring is mathematically represented as

=>
=> 
Generally the induced emf is mathematically represented as

Here

Here
is the permeability of free space with value

So

=> 
So

=> 
Answer:
Wmoon = 131 [N]
Explanation:
We know that the weight of a body is equal to the product of mass by gravitational acceleration.
Since we are told that the gravitational acceleration of the moon is equal to one-sixth of the acceleration of Earth's gravitation. Then we must multiply the value of Earth's gravitation by one-sixth.
![w_{moon}=\frac{1}{6} *m*g\\w_{moon}=\frac{1}{6} *80*9.81\\w_{moon}=130.8 [N] = 131 [N]](https://tex.z-dn.net/?f=w_%7Bmoon%7D%3D%5Cfrac%7B1%7D%7B6%7D%20%2Am%2Ag%5C%5Cw_%7Bmoon%7D%3D%5Cfrac%7B1%7D%7B6%7D%20%2A80%2A9.81%5C%5Cw_%7Bmoon%7D%3D130.8%20%5BN%5D%20%3D%20131%20%5BN%5D)
Answer with Explanation:
We are given that


Differentiate x and y w.r.t t





Substitute t=1


Magnitude of velocity=

Hence, the magnitude of the missile's velocity=16.49 m/s


Substitute t=1



Hence, the magnitude of acceleration when t=1 s=
Molly & Caden have a stressed
Coulomb's Law
Given:
F = 3.0 x 10^-3 Newton
d = 6.0 x 10^2 meters
Q1 = 3.3x 10^-8 Coulombs
k = 9.0 x 10^9 Newton*m^2/Coulombs^2
Required:
Q2 =?
Formula:
F = k • Q1 • Q2 / d²
Solution:
So, to solve for Q2
Q2 = F • d²/ k • Q1
Q2 = (3.0 x 10^-3 Newton) • (6.0 x 10^2 m)² / (9.0 x 10^9
Newton*m²/Coulombs²) • (3.3x 10^-8 Coulombs)
Q2 = (3.0 x 10^-3 Newton) • (360 000 m²) / (297 Newton*m²/Coulombs)
Q2 = 1080 Newton*m²/ (297 Newton*m²/Coulombs)
Then, take the reciprocal of the denominator and start
multiplying
Q2 = 1080 • 1 Coulombs/297
Q2 = 1080 Coulombs / 297
Q2 = 3.63636363636 Coulombs
Q2 = 3.64 Coulumbs