Answer: Two celestial objects are in space: one with a mass of 8.22 x 109 kg and one with a mass of 1.38 x 108 kg. If they are separated by a distance of 1.43 km, then, the magnitude of the force of attraction (in newtons) between the objects will be 52.9kN
Explanation: To find the answer we need to know more about the Newton's law of gravitation.
<h3>What is Newton's law of gravitation?</h3>
- Gravitation is the force of attraction between any two bodies.
- Every body in the universe attracts every other body with a force.
- This force is directly proportional to the product of their masses and inversely proportional to the square of the distance between these two masses.
- Mathematically we can expressed it as,

<h3>How to solve the problem?</h3>
- Here, we have given with the data's,

- Thus, the force of attraction between these two bodies will be,

Thus, if two celestial objects are in space: one with a mass of 8.22 x 109 kg and one with a mass of 1.38 x 108 kg and, If they are separated by a distance of 1.43 km, then, the magnitude of the force of attraction (in newtons) between the objects will be 52.9kN.
Learn more about the Newton's law of gravitation here:
brainly.com/question/28045318
#SPJ4
Answer:
With more particles there will be more collisions and so a greater pressure. The number of particles is proportional to pressure, if the volume of the container and the temperature remain constant. ... This happens when the temperature is increased.
Explanation:
Answer:
D
Explanation:
- The rate of the Diels-Alder is orders of magnitude faster if there is an electron-withdrawing group on the dienophile. For example, replacing a hydrogen on ethene with the electron-withdrawing group CN results in about a 10^5 increase in the reaction rate.
- Other common electron withdrawing functional groups that will accelerate the Diels Alder reaction of dienophiles include aldehydes, ketones, and esters.
- In short, any functional group conjugated with the pi bond which can act as a pi acceptor will accelerate a Diels-Alder reaction with a typical diene.
- See attachment for graphical explanation.
The complete question is: A student draws a picture of the products and reactants of a chemical reaction. What, if anything, is wrong with the drawing?
A) The drawing is wrong because there are more chemicals on the products side.
B) The drawing is correct because there are 12 compounds on each side of the arrow.
C) The drawing is wrong because there are different compounds on each side of the arrow.
D) The drawing is correct because there are 12 atoms of each type on each side of the arrow.
Answer:
Option D is correct
Explanation:
In the diagram attached below, it can be seen that there are 12 atoms of element which combine with 12 atoms of another element forming a compound. For the drawing to be correct, there should be 12 atoms of each type of element on both the reactants as well as product side, which is the case. There cannot be imbalance in the number of atoms of different elements on the two sides for a chemical reaction to occur.
Hence, option D is correct.
Answer:
From the previous explanation Student No. 1 has the correct explanation
Explanation:
When the fluorescent lamp emits a light it has the shape of its emission spectrum, this light collides with the atoms of Nitrogen and excites it, so these wavelengths disappear, lacking in the spectrum seen by the observed, for which we would see an absorption spectrum
The nitrogen that was exited after a short time is given away in its emission lines, in general there are many lines, so the excitation energy is divided between the different emission lines, which must be weak
From the previous explanation Student No. 1 has the correct explanation