Answer:
We know that force applied per unit area is called pressure.
Pressure = Force/ Area
When force is constant than pressure is inversely proportional to area.
1- Calculating the area of three face:
A1 = 20m x 10 m =200 Square meter
A2 = 10 mx 5 m = 50 Square meter
A3 = 20m x 5 m = 100 Square meter
Therefore A1 is maximum and A2 is minimum.
2- Calculate pressure:
P = F/ A1 = 30 / 200 = 0.15 Nm⁻² ( minimum pressure)
P = F / A2 = 30 / 50 = 0.6 Nm⁻² ( maximum pressure)
Hence greater the area less will be the pressure and vice versa.
The focal length of given concave lens will be -26.85 cm
The height of an image to the height of an object is the ratio that is used to determine a lens' magnification. Additionally, it is provided in terms of object and image distance. It is equivalent to the object distance to image distance ratio.
Given concave lens creates a virtual image at -47.0 cm and a magnification of +1.75.
We have to find focal length
The focal length can be found out by following way:
Magnification = m = +1.75
m = hi/h
hi = -47 cm
1.75 = -47/h
h = -26.85 cm
So the focal length of given concave lens will be -26.85 cm
Learn more about magnification factor here:
brainly.com/question/6947486
#SPJ10
Answer:
first number is 113 and the second number is 15
Answer:
kinetic
Explanation:
kinetic energy is powered by motion or gravity the steeper the hill is the faster a ball will roll
Answer: Here this will help you..
Explanation:
1 kg-m/s to kilogram-force meter/second = 1 kilogram-force meter/second
5 kg-m/s to kilogram-force meter/second = 5 kilogram-force meter/second
10 kg-m/s to kilogram-force meter/second = 10 kilogram-force meter/second
20 kg-m/s to kilogram-force meter/second = 20 kilogram-force meter/second
30 kg-m/s to kilogram-force meter/second = 30 kilogram-force meter/second
40 kg-m/s to kilogram-force meter/second = 40 kilogram-force meter/second
50 kg-m/s to kilogram-force meter/second = 50 kilogram-force meter/second
75 kg-m/s to kilogram-force meter/second = 75 kilogram-force meter/second
100 kg-m/s to kilogram-force meter/second = 100 kilogram-force meter/second