12.00 min = 0.2 hr
8.00 min = 0.15 hr
Total distance:
(10.0 km/hr) (0.2 hr) + (15.0 km/hr) (0.15 hr) + (20.0 km/hr) (0.2 hr)
= 8.25 km
Average speed:
(10.0 km/hr + 15.0 km/hr + 20.0 km/hr) / 3
= 15 km/hr
Change in position:
(10.0 km/hr) (0.2 hr) + (15.0 km/hr) (0.15 hr) - (20.0 km/hr) (0.2 hr)
= 0.25 km
Average velocity:
(10.0 km/hr + 15.0 km/hr - 20.0 km/hr) / 3
≈ 1.67 m/s
Answer:

Explanation:
for the unit vector, we need to divide the given vector by its norm, because it should be in the SAME direction as the original vector, but of magnitude "1".
We notice that the norm of the given vector is:

Then, the unit vector becomes:

Acceleration = (change in speed) / (time for the change)
Change in speed = (later speed) - (earlier speed) = (13 - 24) = -11 km/hr
Time for the change = 2 seconds
Acceleration = (-11 km/hr) / (2 sec)
Acceleration = -5.5 km/hr-sec (B)
The correct answer is 1.25 because it is 1/2 of 1 1/2 and that is 1.25.
Total current flow in circuit=0.75
Current flow through third resistor=0.75-(0.24+0.22)
=0.29